DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
/* SPDX-License-Identifier: BSD-3-Clause
 *
 * Copyright(c) 2019-2021 Xilinx, Inc.
 * Copyright(c) 2018-2019 Solarflare Communications Inc.
 *
 * This software was jointly developed between OKTET Labs (under contract
 * for Solarflare) and Solarflare Communications, Inc.
 */

#include <stdbool.h>

#include <rte_mbuf.h>
#include <rte_io.h>
#include <rte_net.h>

#include "efx.h"
#include "efx_types.h"
#include "efx_regs.h"
#include "efx_regs_ef100.h"

#include "sfc_debug.h"
#include "sfc_dp_tx.h"
#include "sfc_tweak.h"
#include "sfc_kvargs.h"
#include "sfc_ef100.h"


#define sfc_ef100_tx_err(_txq, ...) \
	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, ERR, &(_txq)->dp.dpq, __VA_ARGS__)

#define sfc_ef100_tx_debug(_txq, ...) \
	SFC_DP_LOG(SFC_KVARG_DATAPATH_EF100, DEBUG, &(_txq)->dp.dpq, \
		   __VA_ARGS__)


/** Maximum length of the send descriptor data */
#define SFC_EF100_TX_SEND_DESC_LEN_MAX \
	((1u << ESF_GZ_TX_SEND_LEN_WIDTH) - 1)

/** Maximum length of the segment descriptor data */
#define SFC_EF100_TX_SEG_DESC_LEN_MAX \
	((1u << ESF_GZ_TX_SEG_LEN_WIDTH) - 1)

/**
 * Maximum number of descriptors/buffers in the Tx ring.
 * It should guarantee that corresponding event queue never overfill.
 * EF100 native datapath uses event queue of the same size as Tx queue.
 * Maximum number of events on datapath can be estimated as number of
 * Tx queue entries (one event per Tx buffer in the worst case) plus
 * Tx error and flush events.
 */
#define SFC_EF100_TXQ_LIMIT(_ndesc) \
	((_ndesc) - 1 /* head must not step on tail */ - \
	 1 /* Rx error */ - 1 /* flush */)

struct sfc_ef100_tx_sw_desc {
	struct rte_mbuf			*mbuf;
};

struct sfc_ef100_txq {
	unsigned int			flags;
#define SFC_EF100_TXQ_STARTED		0x1
#define SFC_EF100_TXQ_NOT_RUNNING	0x2
#define SFC_EF100_TXQ_EXCEPTION		0x4

	unsigned int			ptr_mask;
	unsigned int			added;
	unsigned int			completed;
	unsigned int			max_fill_level;
	unsigned int			free_thresh;
	struct sfc_ef100_tx_sw_desc	*sw_ring;
	efx_oword_t			*txq_hw_ring;
	volatile void			*doorbell;

	/* Completion/reap */
	unsigned int			evq_read_ptr;
	unsigned int			evq_phase_bit_shift;
	volatile efx_qword_t		*evq_hw_ring;

	uint16_t			tso_tcp_header_offset_limit;
	uint16_t			tso_max_nb_header_descs;
	uint16_t			tso_max_header_len;
	uint16_t			tso_max_nb_payload_descs;
	uint32_t			tso_max_payload_len;
	uint32_t			tso_max_nb_outgoing_frames;

	/* Datapath transmit queue anchor */
	struct sfc_dp_txq		dp;
};

static inline struct sfc_ef100_txq *
sfc_ef100_txq_by_dp_txq(struct sfc_dp_txq *dp_txq)
{
	return container_of(dp_txq, struct sfc_ef100_txq, dp);
}

static int
sfc_ef100_tx_prepare_pkt_tso(struct sfc_ef100_txq * const txq,
			     struct rte_mbuf *m)
{
	size_t header_len = ((m->ol_flags & PKT_TX_TUNNEL_MASK) ?
			     m->outer_l2_len + m->outer_l3_len : 0) +
			    m->l2_len + m->l3_len + m->l4_len;
	size_t payload_len = m->pkt_len - header_len;
	unsigned long mss_conformant_max_payload_len;
	unsigned int nb_payload_descs;

#ifdef RTE_LIBRTE_SFC_EFX_DEBUG
	switch (m->ol_flags & PKT_TX_TUNNEL_MASK) {
	case 0:
		/* FALLTHROUGH */
	case PKT_TX_TUNNEL_VXLAN:
		/* FALLTHROUGH */
	case PKT_TX_TUNNEL_GENEVE:
		break;
	default:
		return ENOTSUP;
	}
#endif

	mss_conformant_max_payload_len =
		m->tso_segsz * txq->tso_max_nb_outgoing_frames;

	/*
	 * Don't really want to know exact number of payload segments.
	 * Just use total number of segments as upper limit. Practically
	 * maximum number of payload segments is significantly bigger
	 * than maximum number header segments, so we can neglect header
	 * segments excluded total number of segments to estimate number
	 * of payload segments required.
	 */
	nb_payload_descs = m->nb_segs;

	/*
	 * Carry out multiple independent checks using bitwise OR
	 * to avoid unnecessary conditional branching.
	 */
	if (unlikely((header_len > txq->tso_max_header_len) |
		     (nb_payload_descs > txq->tso_max_nb_payload_descs) |
		     (payload_len > txq->tso_max_payload_len) |
		     (payload_len > mss_conformant_max_payload_len) |
		     (m->pkt_len == header_len)))
		return EINVAL;

	return 0;
}

static uint16_t
sfc_ef100_tx_prepare_pkts(void *tx_queue, struct rte_mbuf **tx_pkts,
			  uint16_t nb_pkts)
{
	struct sfc_ef100_txq * const txq = sfc_ef100_txq_by_dp_txq(tx_queue);
	uint16_t i;

	for (i = 0; i < nb_pkts; i++) {
		struct rte_mbuf *m = tx_pkts[i];
		unsigned int max_nb_header_segs = 0;
		bool calc_phdr_cksum = false;
		int ret;

		/*
		 * Partial checksum offload is used in the case of
		 * inner TCP/UDP checksum offload. It requires
		 * pseudo-header checksum which is calculated below,
		 * but requires contiguous packet headers.
		 */
		if ((m->ol_flags & PKT_TX_TUNNEL_MASK) &&
		    (m->ol_flags & PKT_TX_L4_MASK)) {
			calc_phdr_cksum = true;
			max_nb_header_segs = 1;
		} else if (m->ol_flags & PKT_TX_TCP_SEG) {
			max_nb_header_segs = txq->tso_max_nb_header_descs;
		}

		ret = sfc_dp_tx_prepare_pkt(m, max_nb_header_segs, 0,
					    txq->tso_tcp_header_offset_limit,
					    txq->max_fill_level, 1, 0);
		if (unlikely(ret != 0)) {
			rte_errno = ret;
			break;
		}

		if (m->ol_flags & PKT_TX_TCP_SEG) {
			ret = sfc_ef100_tx_prepare_pkt_tso(txq, m);
			if (unlikely(ret != 0)) {
				rte_errno = ret;
				break;
			}
		} else if (m->nb_segs > EFX_MASK32(ESF_GZ_TX_SEND_NUM_SEGS)) {
			rte_errno = EINVAL;
			break;
		}

		if (calc_phdr_cksum) {
			/*
			 * Full checksum offload does IPv4 header checksum
			 * and does not require any assistance.
			 */
			ret = rte_net_intel_cksum_flags_prepare(m,
					m->ol_flags & ~PKT_TX_IP_CKSUM);
			if (unlikely(ret != 0)) {
				rte_errno = -ret;
				break;
			}
		}
	}

	return i;
}

static bool
sfc_ef100_tx_get_event(struct sfc_ef100_txq *txq, efx_qword_t *ev)
{
	volatile efx_qword_t *evq_hw_ring = txq->evq_hw_ring;

	/*
	 * Exception flag is set when reap is done.
	 * It is never done twice per packet burst get, and absence of
	 * the flag is checked on burst get entry.
	 */
	SFC_ASSERT((txq->flags & SFC_EF100_TXQ_EXCEPTION) == 0);

	*ev = evq_hw_ring[txq->evq_read_ptr & txq->ptr_mask];

	if (!sfc_ef100_ev_present(ev,
			(txq->evq_read_ptr >> txq->evq_phase_bit_shift) & 1))
		return false;

	if (unlikely(!sfc_ef100_ev_type_is(ev,
					   ESE_GZ_EF100_EV_TX_COMPLETION))) {
		/*
		 * Do not move read_ptr to keep the event for exception
		 * handling by the control path.
		 */
		txq->flags |= SFC_EF100_TXQ_EXCEPTION;
		sfc_ef100_tx_err(txq,
			"TxQ exception at EvQ ptr %u(%#x), event %08x:%08x",
			txq->evq_read_ptr, txq->evq_read_ptr & txq->ptr_mask,
			EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
			EFX_QWORD_FIELD(*ev, EFX_DWORD_0));
		return false;
	}

	sfc_ef100_tx_debug(txq, "TxQ got event %08x:%08x at %u (%#x)",
			   EFX_QWORD_FIELD(*ev, EFX_DWORD_1),
			   EFX_QWORD_FIELD(*ev, EFX_DWORD_0),
			   txq->evq_read_ptr,
			   txq->evq_read_ptr & txq->ptr_mask);

	txq->evq_read_ptr++;
	return true;
}

static unsigned int
sfc_ef100_tx_process_events(struct sfc_ef100_txq *txq)
{
	unsigned int num_descs = 0;
	efx_qword_t tx_ev;

	while (sfc_ef100_tx_get_event(txq, &tx_ev))
		num_descs += EFX_QWORD_FIELD(tx_ev, ESF_GZ_EV_TXCMPL_NUM_DESC);

	return num_descs;
}

static void
sfc_ef100_tx_reap_num_descs(struct sfc_ef100_txq *txq, unsigned int num_descs)
{
	if (num_descs > 0) {
		unsigned int completed = txq->completed;
		unsigned int pending = completed + num_descs;
		struct rte_mbuf *bulk[SFC_TX_REAP_BULK_SIZE];
		unsigned int nb = 0;

		do {
			struct sfc_ef100_tx_sw_desc *txd;
			struct rte_mbuf *m;

			txd = &txq->sw_ring[completed & txq->ptr_mask];
			if (txd->mbuf == NULL)
				continue;

			m = rte_pktmbuf_prefree_seg(txd->mbuf);
			if (m == NULL)
				continue;

			txd->mbuf = NULL;

			if (nb == RTE_DIM(bulk) ||
			    (nb != 0 && m->pool != bulk[0]->pool)) {
				rte_mempool_put_bulk(bulk[0]->pool,
						     (void *)bulk, nb);
				nb = 0;
			}

			bulk[nb++] = m;
		} while (++completed != pending);

		if (nb != 0)
			rte_mempool_put_bulk(bulk[0]->pool, (void *)bulk, nb);

		txq->completed = completed;
	}
}

static void
sfc_ef100_tx_reap(struct sfc_ef100_txq *txq)
{
	sfc_ef100_tx_reap_num_descs(txq, sfc_ef100_tx_process_events(txq));
}

static uint8_t
sfc_ef100_tx_qdesc_cso_inner_l3(uint64_t tx_tunnel)
{
	uint8_t inner_l3;

	switch (tx_tunnel) {
	case PKT_TX_TUNNEL_VXLAN:
		inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_VXLAN;
		break;
	case PKT_TX_TUNNEL_GENEVE:
		inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_GENEVE;
		break;
	default:
		inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_OFF;
		break;
	}
	return inner_l3;
}

static void
sfc_ef100_tx_qdesc_send_create(const struct rte_mbuf *m, efx_oword_t *tx_desc)
{
	bool outer_l3;
	bool outer_l4;
	uint8_t inner_l3;
	uint8_t partial_en;
	uint16_t part_cksum_w;
	uint16_t l4_offset_w;

	if ((m->ol_flags & PKT_TX_TUNNEL_MASK) == 0) {
		outer_l3 = (m->ol_flags & PKT_TX_IP_CKSUM);
		outer_l4 = (m->ol_flags & PKT_TX_L4_MASK);
		inner_l3 = ESE_GZ_TX_DESC_CS_INNER_L3_OFF;
		partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_OFF;
		part_cksum_w = 0;
		l4_offset_w = 0;
	} else {
		outer_l3 = (m->ol_flags & PKT_TX_OUTER_IP_CKSUM);
		outer_l4 = (m->ol_flags & PKT_TX_OUTER_UDP_CKSUM);
		inner_l3 = sfc_ef100_tx_qdesc_cso_inner_l3(m->ol_flags &
							   PKT_TX_TUNNEL_MASK);

		switch (m->ol_flags & PKT_TX_L4_MASK) {
		case PKT_TX_TCP_CKSUM:
			partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_TCP;
			part_cksum_w = offsetof(struct rte_tcp_hdr, cksum) >> 1;
			break;
		case PKT_TX_UDP_CKSUM:
			partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_UDP;
			part_cksum_w = offsetof(struct rte_udp_hdr,
						dgram_cksum) >> 1;
			break;
		default:
			partial_en = ESE_GZ_TX_DESC_CSO_PARTIAL_EN_OFF;
			part_cksum_w = 0;
			break;
		}
		l4_offset_w = (m->outer_l2_len + m->outer_l3_len +
				m->l2_len + m->l3_len) >> 1;
	}

	EFX_POPULATE_OWORD_10(*tx_desc,
			ESF_GZ_TX_SEND_ADDR, rte_mbuf_data_iova(m),
			ESF_GZ_TX_SEND_LEN, rte_pktmbuf_data_len(m),
			ESF_GZ_TX_SEND_NUM_SEGS, m->nb_segs,
			ESF_GZ_TX_SEND_CSO_PARTIAL_START_W, l4_offset_w,
			ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W, part_cksum_w,
			ESF_GZ_TX_SEND_CSO_PARTIAL_EN, partial_en,
			ESF_GZ_TX_SEND_CSO_INNER_L3, inner_l3,
			ESF_GZ_TX_SEND_CSO_OUTER_L3, outer_l3,
			ESF_GZ_TX_SEND_CSO_OUTER_L4, outer_l4,
			ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEND);

	if (m->ol_flags & PKT_TX_VLAN_PKT) {
		efx_oword_t tx_desc_extra_fields;

		EFX_POPULATE_OWORD_2(tx_desc_extra_fields,
				ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
				ESF_GZ_TX_SEND_VLAN_INSERT_TCI, m->vlan_tci);

		EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);
	}
}

static void
sfc_ef100_tx_qdesc_seg_create(rte_iova_t addr, uint16_t len,
			      efx_oword_t *tx_desc)
{
	EFX_POPULATE_OWORD_3(*tx_desc,
			ESF_GZ_TX_SEG_ADDR, addr,
			ESF_GZ_TX_SEG_LEN, len,
			ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG);
}

static void
sfc_ef100_tx_qdesc_tso_create(const struct rte_mbuf *m,
			      uint16_t nb_header_descs,
			      uint16_t nb_payload_descs,
			      size_t header_len, size_t payload_len,
			      size_t outer_iph_off, size_t outer_udph_off,
			      size_t iph_off, size_t tcph_off,
			      efx_oword_t *tx_desc)
{
	efx_oword_t tx_desc_extra_fields;
	int ed_outer_udp_len = (outer_udph_off != 0) ? 1 : 0;
	int ed_outer_ip_len = (outer_iph_off != 0) ? 1 : 0;
	int ed_outer_ip_id = (outer_iph_off != 0) ?
		ESE_GZ_TX_DESC_IP4_ID_INC_MOD16 : 0;
	/*
	 * If no tunnel encapsulation is present, then the ED_INNER
	 * fields should be used.
	 */
	int ed_inner_ip_id = ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
	uint8_t inner_l3 = sfc_ef100_tx_qdesc_cso_inner_l3(
					m->ol_flags & PKT_TX_TUNNEL_MASK);

	EFX_POPULATE_OWORD_10(*tx_desc,
			ESF_GZ_TX_TSO_MSS, m->tso_segsz,
			ESF_GZ_TX_TSO_HDR_NUM_SEGS, nb_header_descs,
			ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, nb_payload_descs,
			ESF_GZ_TX_TSO_ED_OUTER_IP4_ID, ed_outer_ip_id,
			ESF_GZ_TX_TSO_ED_INNER_IP4_ID, ed_inner_ip_id,
			ESF_GZ_TX_TSO_ED_OUTER_IP_LEN, ed_outer_ip_len,
			ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
			ESF_GZ_TX_TSO_ED_OUTER_UDP_LEN, ed_outer_udp_len,
			ESF_GZ_TX_TSO_HDR_LEN_W, header_len >> 1,
			ESF_GZ_TX_TSO_PAYLOAD_LEN, payload_len);

	EFX_POPULATE_OWORD_9(tx_desc_extra_fields,
			/*
			 * Outer offsets are required for outer IPv4 ID
			 * and length edits in the case of tunnel TSO.
			 */
			ESF_GZ_TX_TSO_OUTER_L3_OFF_W, outer_iph_off >> 1,
			ESF_GZ_TX_TSO_OUTER_L4_OFF_W, outer_udph_off >> 1,
			/*
			 * Inner offsets are required for inner IPv4 ID
			 * and IP length edits and partial checksum
			 * offload in the case of tunnel TSO.
			 */
			ESF_GZ_TX_TSO_INNER_L3_OFF_W, iph_off >> 1,
			ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcph_off >> 1,
			ESF_GZ_TX_TSO_CSO_INNER_L4,
				inner_l3 != ESE_GZ_TX_DESC_CS_INNER_L3_OFF,
			ESF_GZ_TX_TSO_CSO_INNER_L3, inner_l3,
			/*
			 * Use outer full checksum offloads which do
			 * not require any extra information.
			 */
			ESF_GZ_TX_TSO_CSO_OUTER_L3, 1,
			ESF_GZ_TX_TSO_CSO_OUTER_L4, 1,
			ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO);

	EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);

	if (m->ol_flags & PKT_TX_VLAN_PKT) {
		EFX_POPULATE_OWORD_2(tx_desc_extra_fields,
				ESF_GZ_TX_TSO_VLAN_INSERT_EN, 1,
				ESF_GZ_TX_TSO_VLAN_INSERT_TCI, m->vlan_tci);

		EFX_OR_OWORD(*tx_desc, tx_desc_extra_fields);
	}
}

static inline void
sfc_ef100_tx_qpush(struct sfc_ef100_txq *txq, unsigned int added)
{
	efx_dword_t dword;

	EFX_POPULATE_DWORD_1(dword, ERF_GZ_TX_RING_PIDX, added & txq->ptr_mask);

	/* DMA sync to device is not required */

	/*
	 * rte_write32() has rte_io_wmb() which guarantees that the STORE
	 * operations (i.e. Rx and event descriptor updates) that precede
	 * the rte_io_wmb() call are visible to NIC before the STORE
	 * operations that follow it (i.e. doorbell write).
	 */
	rte_write32(dword.ed_u32[0], txq->doorbell);
	txq->dp.dpq.tx_dbells++;

	sfc_ef100_tx_debug(txq, "TxQ pushed doorbell at pidx %u (added=%u)",
			   EFX_DWORD_FIELD(dword, ERF_GZ_TX_RING_PIDX),
			   added);
}

static unsigned int
sfc_ef100_tx_pkt_descs_max(const struct rte_mbuf *m)
{
	unsigned int extra_descs = 0;

/** Maximum length of an mbuf segment data */
#define SFC_MBUF_SEG_LEN_MAX		UINT16_MAX
	RTE_BUILD_BUG_ON(sizeof(m->data_len) != 2);

	if (m->ol_flags & PKT_TX_TCP_SEG) {
		/* Tx TSO descriptor */
		extra_descs++;
		/*
		 * Extra Tx segment descriptor may be required if header
		 * ends in the middle of segment.
		 */
		extra_descs++;
	} else {
		/*
		 * mbuf segment cannot be bigger than maximum segment length
		 * and maximum packet length since TSO is not supported yet.
		 * Make sure that the first segment does not need fragmentation
		 * (split into many Tx descriptors).
		 */
		RTE_BUILD_BUG_ON(SFC_EF100_TX_SEND_DESC_LEN_MAX <
				 RTE_MIN((unsigned int)EFX_MAC_PDU_MAX,
				 SFC_MBUF_SEG_LEN_MAX));
	}

	/*
	 * Any segment of scattered packet cannot be bigger than maximum
	 * segment length. Make sure that subsequent segments do not need
	 * fragmentation (split into many Tx descriptors).
	 */
	RTE_BUILD_BUG_ON(SFC_EF100_TX_SEG_DESC_LEN_MAX < SFC_MBUF_SEG_LEN_MAX);

	return m->nb_segs + extra_descs;
}

static struct rte_mbuf *
sfc_ef100_xmit_tso_pkt(struct sfc_ef100_txq * const txq,
		       struct rte_mbuf *m, unsigned int *added)
{
	struct rte_mbuf *m_seg = m;
	unsigned int nb_hdr_descs;
	unsigned int nb_pld_descs;
	unsigned int seg_split = 0;
	unsigned int tso_desc_id;
	unsigned int id;
	size_t outer_iph_off;
	size_t outer_udph_off;
	size_t iph_off;
	size_t tcph_off;
	size_t header_len;
	size_t remaining_hdr_len;

	if (m->ol_flags & PKT_TX_TUNNEL_MASK) {
		outer_iph_off = m->outer_l2_len;
		outer_udph_off = outer_iph_off + m->outer_l3_len;
	} else {
		outer_iph_off = 0;
		outer_udph_off = 0;
	}
	iph_off = outer_udph_off + m->l2_len;
	tcph_off = iph_off + m->l3_len;
	header_len = tcph_off + m->l4_len;

	/*
	 * Remember ID of the TX_TSO descriptor to be filled in.
	 * We can't fill it in right now since we need to calculate
	 * number of header and payload segments first and don't want
	 * to traverse it twice here.
	 */
	tso_desc_id = (*added)++ & txq->ptr_mask;

	remaining_hdr_len = header_len;
	do {
		id = (*added)++ & txq->ptr_mask;
		if (rte_pktmbuf_data_len(m_seg) <= remaining_hdr_len) {
			/* The segment is fully header segment */
			sfc_ef100_tx_qdesc_seg_create(
				rte_mbuf_data_iova(m_seg),
				rte_pktmbuf_data_len(m_seg),
				&txq->txq_hw_ring[id]);
			remaining_hdr_len -= rte_pktmbuf_data_len(m_seg);
		} else {
			/*
			 * The segment must be split into header and
			 * payload segments
			 */
			sfc_ef100_tx_qdesc_seg_create(
				rte_mbuf_data_iova(m_seg),
				remaining_hdr_len,
				&txq->txq_hw_ring[id]);
			SFC_ASSERT(txq->sw_ring[id].mbuf == NULL);

			id = (*added)++ & txq->ptr_mask;
			sfc_ef100_tx_qdesc_seg_create(
				rte_mbuf_data_iova(m_seg) + remaining_hdr_len,
				rte_pktmbuf_data_len(m_seg) - remaining_hdr_len,
				&txq->txq_hw_ring[id]);
			remaining_hdr_len = 0;
			seg_split = 1;
		}
		txq->sw_ring[id].mbuf = m_seg;
		m_seg = m_seg->next;
	} while (remaining_hdr_len > 0);

	/*
	 * If a segment is split into header and payload segments, added
	 * pointer counts it twice and we should correct it.
	 */
	nb_hdr_descs = ((id - tso_desc_id) & txq->ptr_mask) - seg_split;
	nb_pld_descs = m->nb_segs - nb_hdr_descs + seg_split;

	sfc_ef100_tx_qdesc_tso_create(m, nb_hdr_descs, nb_pld_descs, header_len,
				      rte_pktmbuf_pkt_len(m) - header_len,
				      outer_iph_off, outer_udph_off,
				      iph_off, tcph_off,
				      &txq->txq_hw_ring[tso_desc_id]);

	return m_seg;
}

static uint16_t
sfc_ef100_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
	struct sfc_ef100_txq * const txq = sfc_ef100_txq_by_dp_txq(tx_queue);
	unsigned int added;
	unsigned int dma_desc_space;
	bool reap_done;
	struct rte_mbuf **pktp;
	struct rte_mbuf **pktp_end;

	if (unlikely(txq->flags &
		     (SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION)))
		return 0;

	added = txq->added;
	dma_desc_space = txq->max_fill_level - (added - txq->completed);

	reap_done = (dma_desc_space < txq->free_thresh);
	if (reap_done) {
		sfc_ef100_tx_reap(txq);
		dma_desc_space = txq->max_fill_level - (added - txq->completed);
	}

	for (pktp = &tx_pkts[0], pktp_end = &tx_pkts[nb_pkts];
	     pktp != pktp_end;
	     ++pktp) {
		struct rte_mbuf *m_seg = *pktp;
		unsigned int pkt_start = added;
		unsigned int id;

		if (likely(pktp + 1 != pktp_end))
			rte_mbuf_prefetch_part1(pktp[1]);

		if (sfc_ef100_tx_pkt_descs_max(m_seg) > dma_desc_space) {
			if (reap_done)
				break;

			/* Push already prepared descriptors before polling */
			if (added != txq->added) {
				sfc_ef100_tx_qpush(txq, added);
				txq->added = added;
			}

			sfc_ef100_tx_reap(txq);
			reap_done = true;
			dma_desc_space = txq->max_fill_level -
				(added - txq->completed);
			if (sfc_ef100_tx_pkt_descs_max(m_seg) > dma_desc_space)
				break;
		}

		if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
			m_seg = sfc_ef100_xmit_tso_pkt(txq, m_seg, &added);
		} else {
			id = added++ & txq->ptr_mask;
			sfc_ef100_tx_qdesc_send_create(m_seg,
						       &txq->txq_hw_ring[id]);

			/*
			 * rte_pktmbuf_free() is commonly used in DPDK for
			 * recycling packets - the function checks every
			 * segment's reference counter and returns the
			 * buffer to its pool whenever possible;
			 * nevertheless, freeing mbuf segments one by one
			 * may entail some performance decline;
			 * from this point, sfc_efx_tx_reap() does the same job
			 * on its own and frees buffers in bulks (all mbufs
			 * within a bulk belong to the same pool);
			 * from this perspective, individual segment pointers
			 * must be associated with the corresponding SW
			 * descriptors independently so that only one loop
			 * is sufficient on reap to inspect all the buffers
			 */
			txq->sw_ring[id].mbuf = m_seg;
			m_seg = m_seg->next;
		}

		while (m_seg != NULL) {
			RTE_BUILD_BUG_ON(SFC_MBUF_SEG_LEN_MAX >
					 SFC_EF100_TX_SEG_DESC_LEN_MAX);

			id = added++ & txq->ptr_mask;
			sfc_ef100_tx_qdesc_seg_create(rte_mbuf_data_iova(m_seg),
					rte_pktmbuf_data_len(m_seg),
					&txq->txq_hw_ring[id]);
			txq->sw_ring[id].mbuf = m_seg;
			m_seg = m_seg->next;
		}

		dma_desc_space -= (added - pkt_start);
	}

	if (likely(added != txq->added)) {
		sfc_ef100_tx_qpush(txq, added);
		txq->added = added;
	}

#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
	if (!reap_done)
		sfc_ef100_tx_reap(txq);
#endif

	return pktp - &tx_pkts[0];
}

static sfc_dp_tx_get_dev_info_t sfc_ef100_get_dev_info;
static void
sfc_ef100_get_dev_info(struct rte_eth_dev_info *dev_info)
{
	/*
	 * Number of descriptors just defines maximum number of pushed
	 * descriptors (fill level).
	 */
	dev_info->tx_desc_lim.nb_min = 1;
	dev_info->tx_desc_lim.nb_align = 1;
}

static sfc_dp_tx_qsize_up_rings_t sfc_ef100_tx_qsize_up_rings;
static int
sfc_ef100_tx_qsize_up_rings(uint16_t nb_tx_desc,
			   struct sfc_dp_tx_hw_limits *limits,
			   unsigned int *txq_entries,
			   unsigned int *evq_entries,
			   unsigned int *txq_max_fill_level)
{
	/*
	 * rte_ethdev API guarantees that the number meets min, max and
	 * alignment requirements.
	 */
	if (nb_tx_desc <= limits->txq_min_entries)
		*txq_entries = limits->txq_min_entries;
	else
		*txq_entries = rte_align32pow2(nb_tx_desc);

	*evq_entries = *txq_entries;

	*txq_max_fill_level = RTE_MIN(nb_tx_desc,
				      SFC_EF100_TXQ_LIMIT(*evq_entries));
	return 0;
}

static sfc_dp_tx_qcreate_t sfc_ef100_tx_qcreate;
static int
sfc_ef100_tx_qcreate(uint16_t port_id, uint16_t queue_id,
		    const struct rte_pci_addr *pci_addr, int socket_id,
		    const struct sfc_dp_tx_qcreate_info *info,
		    struct sfc_dp_txq **dp_txqp)
{
	struct sfc_ef100_txq *txq;
	int rc;

	rc = EINVAL;
	if (info->txq_entries != info->evq_entries)
		goto fail_bad_args;

	rc = ENOMEM;
	txq = rte_zmalloc_socket("sfc-ef100-txq", sizeof(*txq),
				 RTE_CACHE_LINE_SIZE, socket_id);
	if (txq == NULL)
		goto fail_txq_alloc;

	sfc_dp_queue_init(&txq->dp.dpq, port_id, queue_id, pci_addr);

	rc = ENOMEM;
	txq->sw_ring = rte_calloc_socket("sfc-ef100-txq-sw_ring",
					 info->txq_entries,
					 sizeof(*txq->sw_ring),
					 RTE_CACHE_LINE_SIZE, socket_id);
	if (txq->sw_ring == NULL)
		goto fail_sw_ring_alloc;

	txq->flags = SFC_EF100_TXQ_NOT_RUNNING;
	txq->ptr_mask = info->txq_entries - 1;
	txq->max_fill_level = info->max_fill_level;
	txq->free_thresh = info->free_thresh;
	txq->evq_phase_bit_shift = rte_bsf32(info->evq_entries);
	txq->txq_hw_ring = info->txq_hw_ring;
	txq->doorbell = (volatile uint8_t *)info->mem_bar +
			ER_GZ_TX_RING_DOORBELL_OFST +
			(info->hw_index << info->vi_window_shift);
	txq->evq_hw_ring = info->evq_hw_ring;

	txq->tso_tcp_header_offset_limit = info->tso_tcp_header_offset_limit;
	txq->tso_max_nb_header_descs = info->tso_max_nb_header_descs;
	txq->tso_max_header_len = info->tso_max_header_len;
	txq->tso_max_nb_payload_descs = info->tso_max_nb_payload_descs;
	txq->tso_max_payload_len = info->tso_max_payload_len;
	txq->tso_max_nb_outgoing_frames = info->tso_max_nb_outgoing_frames;

	sfc_ef100_tx_debug(txq, "TxQ doorbell is %p", txq->doorbell);

	*dp_txqp = &txq->dp;
	return 0;

fail_sw_ring_alloc:
	rte_free(txq);

fail_txq_alloc:
fail_bad_args:
	return rc;
}

static sfc_dp_tx_qdestroy_t sfc_ef100_tx_qdestroy;
static void
sfc_ef100_tx_qdestroy(struct sfc_dp_txq *dp_txq)
{
	struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);

	rte_free(txq->sw_ring);
	rte_free(txq);
}

static sfc_dp_tx_qstart_t sfc_ef100_tx_qstart;
static int
sfc_ef100_tx_qstart(struct sfc_dp_txq *dp_txq, unsigned int evq_read_ptr,
		   unsigned int txq_desc_index)
{
	struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);

	txq->evq_read_ptr = evq_read_ptr;
	txq->added = txq->completed = txq_desc_index;

	txq->flags |= SFC_EF100_TXQ_STARTED;
	txq->flags &= ~(SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION);

	return 0;
}

static sfc_dp_tx_qstop_t sfc_ef100_tx_qstop;
static void
sfc_ef100_tx_qstop(struct sfc_dp_txq *dp_txq, unsigned int *evq_read_ptr)
{
	struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);

	txq->flags |= SFC_EF100_TXQ_NOT_RUNNING;

	*evq_read_ptr = txq->evq_read_ptr;
}

static sfc_dp_tx_qtx_ev_t sfc_ef100_tx_qtx_ev;
static bool
sfc_ef100_tx_qtx_ev(struct sfc_dp_txq *dp_txq, unsigned int num_descs)
{
	struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);

	SFC_ASSERT(txq->flags & SFC_EF100_TXQ_NOT_RUNNING);

	sfc_ef100_tx_reap_num_descs(txq, num_descs);

	return false;
}

static sfc_dp_tx_qreap_t sfc_ef100_tx_qreap;
static void
sfc_ef100_tx_qreap(struct sfc_dp_txq *dp_txq)
{
	struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
	unsigned int completed;

	for (completed = txq->completed; completed != txq->added; ++completed) {
		struct sfc_ef100_tx_sw_desc *txd;

		txd = &txq->sw_ring[completed & txq->ptr_mask];
		if (txd->mbuf != NULL) {
			rte_pktmbuf_free_seg(txd->mbuf);
			txd->mbuf = NULL;
		}
	}

	txq->flags &= ~SFC_EF100_TXQ_STARTED;
}

static unsigned int
sfc_ef100_tx_qdesc_npending(struct sfc_ef100_txq *txq)
{
	const unsigned int evq_old_read_ptr = txq->evq_read_ptr;
	unsigned int npending = 0;
	efx_qword_t tx_ev;

	if (unlikely(txq->flags &
		     (SFC_EF100_TXQ_NOT_RUNNING | SFC_EF100_TXQ_EXCEPTION)))
		return 0;

	while (sfc_ef100_tx_get_event(txq, &tx_ev))
		npending += EFX_QWORD_FIELD(tx_ev, ESF_GZ_EV_TXCMPL_NUM_DESC);

	/*
	 * The function does not process events, so return event queue read
	 * pointer to the original position to allow the events that were
	 * read to be processed later
	 */
	txq->evq_read_ptr = evq_old_read_ptr;

	return npending;
}

static sfc_dp_tx_qdesc_status_t sfc_ef100_tx_qdesc_status;
static int
sfc_ef100_tx_qdesc_status(struct sfc_dp_txq *dp_txq, uint16_t offset)
{
	struct sfc_ef100_txq *txq = sfc_ef100_txq_by_dp_txq(dp_txq);
	unsigned int pushed = txq->added - txq->completed;

	if (unlikely(offset > txq->ptr_mask))
		return -EINVAL;

	if (unlikely(offset >= txq->max_fill_level))
		return RTE_ETH_TX_DESC_UNAVAIL;

	return (offset >= pushed ||
		offset < sfc_ef100_tx_qdesc_npending(txq)) ?
		RTE_ETH_TX_DESC_DONE : RTE_ETH_TX_DESC_FULL;
}

struct sfc_dp_tx sfc_ef100_tx = {
	.dp = {
		.name		= SFC_KVARG_DATAPATH_EF100,
		.type		= SFC_DP_TX,
		.hw_fw_caps	= SFC_DP_HW_FW_CAP_EF100,
	},
	.features		= SFC_DP_TX_FEAT_MULTI_PROCESS,
	.dev_offload_capa	= 0,
	.queue_offload_capa	= DEV_TX_OFFLOAD_VLAN_INSERT |
				  DEV_TX_OFFLOAD_IPV4_CKSUM |
				  DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |
				  DEV_TX_OFFLOAD_OUTER_UDP_CKSUM |
				  DEV_TX_OFFLOAD_UDP_CKSUM |
				  DEV_TX_OFFLOAD_TCP_CKSUM |
				  DEV_TX_OFFLOAD_MULTI_SEGS |
				  DEV_TX_OFFLOAD_TCP_TSO |
				  DEV_TX_OFFLOAD_VXLAN_TNL_TSO |
				  DEV_TX_OFFLOAD_GENEVE_TNL_TSO,
	.get_dev_info		= sfc_ef100_get_dev_info,
	.qsize_up_rings		= sfc_ef100_tx_qsize_up_rings,
	.qcreate		= sfc_ef100_tx_qcreate,
	.qdestroy		= sfc_ef100_tx_qdestroy,
	.qstart			= sfc_ef100_tx_qstart,
	.qtx_ev			= sfc_ef100_tx_qtx_ev,
	.qstop			= sfc_ef100_tx_qstop,
	.qreap			= sfc_ef100_tx_qreap,
	.qdesc_status		= sfc_ef100_tx_qdesc_status,
	.pkt_prepare		= sfc_ef100_tx_prepare_pkts,
	.pkt_burst		= sfc_ef100_xmit_pkts,
};