DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2014 Intel Corporation
 */
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include <sys/queue.h>

#include <rte_memory.h>
#include <rte_errno.h>
#include <rte_eal.h>
#include <rte_eal_memconfig.h>
#include <rte_launch.h>
#include <rte_per_lcore.h>
#include <rte_lcore.h>
#include <rte_common.h>
#include <rte_string_fns.h>
#include <rte_spinlock.h>
#include <rte_memcpy.h>
#include <rte_atomic.h>
#include <rte_fbarray.h>

#include "eal_internal_cfg.h"
#include "eal_memalloc.h"
#include "malloc_elem.h"
#include "malloc_heap.h"
#include "malloc_mp.h"

static unsigned
check_hugepage_sz(unsigned flags, uint64_t hugepage_sz)
{
	unsigned check_flag = 0;

	if (!(flags & ~RTE_MEMZONE_SIZE_HINT_ONLY))
		return 1;

	switch (hugepage_sz) {
	case RTE_PGSIZE_256K:
		check_flag = RTE_MEMZONE_256KB;
		break;
	case RTE_PGSIZE_2M:
		check_flag = RTE_MEMZONE_2MB;
		break;
	case RTE_PGSIZE_16M:
		check_flag = RTE_MEMZONE_16MB;
		break;
	case RTE_PGSIZE_256M:
		check_flag = RTE_MEMZONE_256MB;
		break;
	case RTE_PGSIZE_512M:
		check_flag = RTE_MEMZONE_512MB;
		break;
	case RTE_PGSIZE_1G:
		check_flag = RTE_MEMZONE_1GB;
		break;
	case RTE_PGSIZE_4G:
		check_flag = RTE_MEMZONE_4GB;
		break;
	case RTE_PGSIZE_16G:
		check_flag = RTE_MEMZONE_16GB;
	}

	return check_flag & flags;
}

/*
 * Expand the heap with a memory area.
 */
static struct malloc_elem *
malloc_heap_add_memory(struct malloc_heap *heap, struct rte_memseg_list *msl,
		void *start, size_t len)
{
	struct malloc_elem *elem = start;

	malloc_elem_init(elem, heap, msl, len);

	malloc_elem_insert(elem);

	elem = malloc_elem_join_adjacent_free(elem);

	malloc_elem_free_list_insert(elem);

	return elem;
}

static int
malloc_add_seg(const struct rte_memseg_list *msl,
		const struct rte_memseg *ms, size_t len, void *arg __rte_unused)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct rte_memseg_list *found_msl;
	struct malloc_heap *heap;
	int msl_idx;

	heap = &mcfg->malloc_heaps[msl->socket_id];

	/* msl is const, so find it */
	msl_idx = msl - mcfg->memsegs;

	if (msl_idx < 0 || msl_idx >= RTE_MAX_MEMSEG_LISTS)
		return -1;

	found_msl = &mcfg->memsegs[msl_idx];

	malloc_heap_add_memory(heap, found_msl, ms->addr, len);

	heap->total_size += len;

	RTE_LOG(DEBUG, EAL, "Added %zuM to heap on socket %i\n", len >> 20,
			msl->socket_id);
	return 0;
}

/*
 * Iterates through the freelist for a heap to find a free element
 * which can store data of the required size and with the requested alignment.
 * If size is 0, find the biggest available elem.
 * Returns null on failure, or pointer to element on success.
 */
static struct malloc_elem *
find_suitable_element(struct malloc_heap *heap, size_t size,
		unsigned int flags, size_t align, size_t bound, bool contig)
{
	size_t idx;
	struct malloc_elem *elem, *alt_elem = NULL;

	for (idx = malloc_elem_free_list_index(size);
			idx < RTE_HEAP_NUM_FREELISTS; idx++) {
		for (elem = LIST_FIRST(&heap->free_head[idx]);
				!!elem; elem = LIST_NEXT(elem, free_list)) {
			if (malloc_elem_can_hold(elem, size, align, bound,
					contig)) {
				if (check_hugepage_sz(flags,
						elem->msl->page_sz))
					return elem;
				if (alt_elem == NULL)
					alt_elem = elem;
			}
		}
	}

	if ((alt_elem != NULL) && (flags & RTE_MEMZONE_SIZE_HINT_ONLY))
		return alt_elem;

	return NULL;
}

/*
 * Main function to allocate a block of memory from the heap.
 * It locks the free list, scans it, and adds a new memseg if the
 * scan fails. Once the new memseg is added, it re-scans and should return
 * the new element after releasing the lock.
 */
static void *
heap_alloc(struct malloc_heap *heap, const char *type __rte_unused, size_t size,
		unsigned int flags, size_t align, size_t bound, bool contig)
{
	struct malloc_elem *elem;

	size = RTE_CACHE_LINE_ROUNDUP(size);
	align = RTE_CACHE_LINE_ROUNDUP(align);

	elem = find_suitable_element(heap, size, flags, align, bound, contig);
	if (elem != NULL) {
		elem = malloc_elem_alloc(elem, size, align, bound, contig);

		/* increase heap's count of allocated elements */
		heap->alloc_count++;
	}

	return elem == NULL ? NULL : (void *)(&elem[1]);
}

/* this function is exposed in malloc_mp.h */
void
rollback_expand_heap(struct rte_memseg **ms, int n_segs,
		struct malloc_elem *elem, void *map_addr, size_t map_len)
{
	if (elem != NULL) {
		malloc_elem_free_list_remove(elem);
		malloc_elem_hide_region(elem, map_addr, map_len);
	}

	eal_memalloc_free_seg_bulk(ms, n_segs);
}

/* this function is exposed in malloc_mp.h */
struct malloc_elem *
alloc_pages_on_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
		int socket, unsigned int flags, size_t align, size_t bound,
		bool contig, struct rte_memseg **ms, int n_segs)
{
	struct rte_memseg_list *msl;
	struct malloc_elem *elem = NULL;
	size_t alloc_sz;
	int allocd_pages;
	void *ret, *map_addr;

	alloc_sz = (size_t)pg_sz * n_segs;

	/* first, check if we're allowed to allocate this memory */
	if (eal_memalloc_mem_alloc_validate(socket,
			heap->total_size + alloc_sz) < 0) {
		RTE_LOG(DEBUG, EAL, "User has disallowed allocation\n");
		return NULL;
	}

	allocd_pages = eal_memalloc_alloc_seg_bulk(ms, n_segs, pg_sz,
			socket, true);

	/* make sure we've allocated our pages... */
	if (allocd_pages < 0)
		return NULL;

	map_addr = ms[0]->addr;
	msl = rte_mem_virt2memseg_list(map_addr);

	/* check if we wanted contiguous memory but didn't get it */
	if (contig && !eal_memalloc_is_contig(msl, map_addr, alloc_sz)) {
		RTE_LOG(DEBUG, EAL, "%s(): couldn't allocate physically contiguous space\n",
				__func__);
		goto fail;
	}

	/* add newly minted memsegs to malloc heap */
	elem = malloc_heap_add_memory(heap, msl, map_addr, alloc_sz);

	/* try once more, as now we have allocated new memory */
	ret = find_suitable_element(heap, elt_size, flags, align, bound,
			contig);

	if (ret == NULL)
		goto fail;

	return elem;

fail:
	rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);
	return NULL;
}

static int
try_expand_heap_primary(struct malloc_heap *heap, uint64_t pg_sz,
		size_t elt_size, int socket, unsigned int flags, size_t align,
		size_t bound, bool contig)
{
	struct malloc_elem *elem;
	struct rte_memseg **ms;
	void *map_addr;
	size_t alloc_sz;
	int n_segs;
	bool callback_triggered = false;

	alloc_sz = RTE_ALIGN_CEIL(align + elt_size +
			MALLOC_ELEM_TRAILER_LEN, pg_sz);
	n_segs = alloc_sz / pg_sz;

	/* we can't know in advance how many pages we'll need, so we malloc */
	ms = malloc(sizeof(*ms) * n_segs);

	memset(ms, 0, sizeof(*ms) * n_segs);

	if (ms == NULL)
		return -1;

	elem = alloc_pages_on_heap(heap, pg_sz, elt_size, socket, flags, align,
			bound, contig, ms, n_segs);

	if (elem == NULL)
		goto free_ms;

	map_addr = ms[0]->addr;

	/* notify user about changes in memory map */
	eal_memalloc_mem_event_notify(RTE_MEM_EVENT_ALLOC, map_addr, alloc_sz);

	/* notify other processes that this has happened */
	if (request_sync()) {
		/* we couldn't ensure all processes have mapped memory,
		 * so free it back and notify everyone that it's been
		 * freed back.
		 *
		 * technically, we could've avoided adding memory addresses to
		 * the map, but that would've led to inconsistent behavior
		 * between primary and secondary processes, as those get
		 * callbacks during sync. therefore, force primary process to
		 * do alloc-and-rollback syncs as well.
		 */
		callback_triggered = true;
		goto free_elem;
	}
	heap->total_size += alloc_sz;

	RTE_LOG(DEBUG, EAL, "Heap on socket %d was expanded by %zdMB\n",
		socket, alloc_sz >> 20ULL);

	free(ms);

	return 0;

free_elem:
	if (callback_triggered)
		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
				map_addr, alloc_sz);

	rollback_expand_heap(ms, n_segs, elem, map_addr, alloc_sz);

	request_sync();
free_ms:
	free(ms);

	return -1;
}

static int
try_expand_heap_secondary(struct malloc_heap *heap, uint64_t pg_sz,
		size_t elt_size, int socket, unsigned int flags, size_t align,
		size_t bound, bool contig)
{
	struct malloc_mp_req req;
	int req_result;

	memset(&req, 0, sizeof(req));

	req.t = REQ_TYPE_ALLOC;
	req.alloc_req.align = align;
	req.alloc_req.bound = bound;
	req.alloc_req.contig = contig;
	req.alloc_req.flags = flags;
	req.alloc_req.elt_size = elt_size;
	req.alloc_req.page_sz = pg_sz;
	req.alloc_req.socket = socket;
	req.alloc_req.heap = heap; /* it's in shared memory */

	req_result = request_to_primary(&req);

	if (req_result != 0)
		return -1;

	if (req.result != REQ_RESULT_SUCCESS)
		return -1;

	return 0;
}

static int
try_expand_heap(struct malloc_heap *heap, uint64_t pg_sz, size_t elt_size,
		int socket, unsigned int flags, size_t align, size_t bound,
		bool contig)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	int ret;

	rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);

	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
		ret = try_expand_heap_primary(heap, pg_sz, elt_size, socket,
				flags, align, bound, contig);
	} else {
		ret = try_expand_heap_secondary(heap, pg_sz, elt_size, socket,
				flags, align, bound, contig);
	}

	rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
	return ret;
}

static int
compare_pagesz(const void *a, const void *b)
{
	const struct rte_memseg_list * const*mpa = a;
	const struct rte_memseg_list * const*mpb = b;
	const struct rte_memseg_list *msla = *mpa;
	const struct rte_memseg_list *mslb = *mpb;
	uint64_t pg_sz_a = msla->page_sz;
	uint64_t pg_sz_b = mslb->page_sz;

	if (pg_sz_a < pg_sz_b)
		return -1;
	if (pg_sz_a > pg_sz_b)
		return 1;
	return 0;
}

static int
alloc_more_mem_on_socket(struct malloc_heap *heap, size_t size, int socket,
		unsigned int flags, size_t align, size_t bound, bool contig)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct rte_memseg_list *requested_msls[RTE_MAX_MEMSEG_LISTS];
	struct rte_memseg_list *other_msls[RTE_MAX_MEMSEG_LISTS];
	uint64_t requested_pg_sz[RTE_MAX_MEMSEG_LISTS];
	uint64_t other_pg_sz[RTE_MAX_MEMSEG_LISTS];
	uint64_t prev_pg_sz;
	int i, n_other_msls, n_other_pg_sz, n_requested_msls, n_requested_pg_sz;
	bool size_hint = (flags & RTE_MEMZONE_SIZE_HINT_ONLY) > 0;
	unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
	void *ret;

	memset(requested_msls, 0, sizeof(requested_msls));
	memset(other_msls, 0, sizeof(other_msls));
	memset(requested_pg_sz, 0, sizeof(requested_pg_sz));
	memset(other_pg_sz, 0, sizeof(other_pg_sz));

	/*
	 * go through memseg list and take note of all the page sizes available,
	 * and if any of them were specifically requested by the user.
	 */
	n_requested_msls = 0;
	n_other_msls = 0;
	for (i = 0; i < RTE_MAX_MEMSEG_LISTS; i++) {
		struct rte_memseg_list *msl = &mcfg->memsegs[i];

		if (msl->socket_id != socket)
			continue;

		if (msl->base_va == NULL)
			continue;

		/* if pages of specific size were requested */
		if (size_flags != 0 && check_hugepage_sz(size_flags,
				msl->page_sz))
			requested_msls[n_requested_msls++] = msl;
		else if (size_flags == 0 || size_hint)
			other_msls[n_other_msls++] = msl;
	}

	/* sort the lists, smallest first */
	qsort(requested_msls, n_requested_msls, sizeof(requested_msls[0]),
			compare_pagesz);
	qsort(other_msls, n_other_msls, sizeof(other_msls[0]),
			compare_pagesz);

	/* now, extract page sizes we are supposed to try */
	prev_pg_sz = 0;
	n_requested_pg_sz = 0;
	for (i = 0; i < n_requested_msls; i++) {
		uint64_t pg_sz = requested_msls[i]->page_sz;

		if (prev_pg_sz != pg_sz) {
			requested_pg_sz[n_requested_pg_sz++] = pg_sz;
			prev_pg_sz = pg_sz;
		}
	}
	prev_pg_sz = 0;
	n_other_pg_sz = 0;
	for (i = 0; i < n_other_msls; i++) {
		uint64_t pg_sz = other_msls[i]->page_sz;

		if (prev_pg_sz != pg_sz) {
			other_pg_sz[n_other_pg_sz++] = pg_sz;
			prev_pg_sz = pg_sz;
		}
	}

	/* finally, try allocating memory of specified page sizes, starting from
	 * the smallest sizes
	 */
	for (i = 0; i < n_requested_pg_sz; i++) {
		uint64_t pg_sz = requested_pg_sz[i];

		/*
		 * do not pass the size hint here, as user expects other page
		 * sizes first, before resorting to best effort allocation.
		 */
		if (!try_expand_heap(heap, pg_sz, size, socket, size_flags,
				align, bound, contig))
			return 0;
	}
	if (n_other_pg_sz == 0)
		return -1;

	/* now, check if we can reserve anything with size hint */
	ret = find_suitable_element(heap, size, flags, align, bound, contig);
	if (ret != NULL)
		return 0;

	/*
	 * we still couldn't reserve memory, so try expanding heap with other
	 * page sizes, if there are any
	 */
	for (i = 0; i < n_other_pg_sz; i++) {
		uint64_t pg_sz = other_pg_sz[i];

		if (!try_expand_heap(heap, pg_sz, size, socket, flags,
				align, bound, contig))
			return 0;
	}
	return -1;
}

/* this will try lower page sizes first */
static void *
heap_alloc_on_socket(const char *type, size_t size, int socket,
		unsigned int flags, size_t align, size_t bound, bool contig)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct malloc_heap *heap = &mcfg->malloc_heaps[socket];
	unsigned int size_flags = flags & ~RTE_MEMZONE_SIZE_HINT_ONLY;
	void *ret;

	rte_spinlock_lock(&(heap->lock));

	align = align == 0 ? 1 : align;

	/* for legacy mode, try once and with all flags */
	if (internal_config.legacy_mem) {
		ret = heap_alloc(heap, type, size, flags, align, bound, contig);
		goto alloc_unlock;
	}

	/*
	 * we do not pass the size hint here, because even if allocation fails,
	 * we may still be able to allocate memory from appropriate page sizes,
	 * we just need to request more memory first.
	 */
	ret = heap_alloc(heap, type, size, size_flags, align, bound, contig);
	if (ret != NULL)
		goto alloc_unlock;

	if (!alloc_more_mem_on_socket(heap, size, socket, flags, align, bound,
			contig)) {
		ret = heap_alloc(heap, type, size, flags, align, bound, contig);

		/* this should have succeeded */
		if (ret == NULL)
			RTE_LOG(ERR, EAL, "Error allocating from heap\n");
	}
alloc_unlock:
	rte_spinlock_unlock(&(heap->lock));
	return ret;
}

void *
malloc_heap_alloc(const char *type, size_t size, int socket_arg,
		unsigned int flags, size_t align, size_t bound, bool contig)
{
	int socket, i, cur_socket;
	void *ret;

	/* return NULL if size is 0 or alignment is not power-of-2 */
	if (size == 0 || (align && !rte_is_power_of_2(align)))
		return NULL;

	if (!rte_eal_has_hugepages())
		socket_arg = SOCKET_ID_ANY;

	if (socket_arg == SOCKET_ID_ANY)
		socket = malloc_get_numa_socket();
	else
		socket = socket_arg;

	/* Check socket parameter */
	if (socket >= RTE_MAX_NUMA_NODES)
		return NULL;

	ret = heap_alloc_on_socket(type, size, socket, flags, align, bound,
			contig);
	if (ret != NULL || socket_arg != SOCKET_ID_ANY)
		return ret;

	/* try other heaps */
	for (i = 0; i < (int) rte_socket_count(); i++) {
		cur_socket = rte_socket_id_by_idx(i);
		if (cur_socket == socket)
			continue;
		ret = heap_alloc_on_socket(type, size, cur_socket, flags,
				align, bound, contig);
		if (ret != NULL)
			return ret;
	}
	return NULL;
}

/* this function is exposed in malloc_mp.h */
int
malloc_heap_free_pages(void *aligned_start, size_t aligned_len)
{
	int n_segs, seg_idx, max_seg_idx;
	struct rte_memseg_list *msl;
	size_t page_sz;

	msl = rte_mem_virt2memseg_list(aligned_start);
	if (msl == NULL)
		return -1;

	page_sz = (size_t)msl->page_sz;
	n_segs = aligned_len / page_sz;
	seg_idx = RTE_PTR_DIFF(aligned_start, msl->base_va) / page_sz;
	max_seg_idx = seg_idx + n_segs;

	for (; seg_idx < max_seg_idx; seg_idx++) {
		struct rte_memseg *ms;

		ms = rte_fbarray_get(&msl->memseg_arr, seg_idx);
		eal_memalloc_free_seg(ms);
	}
	return 0;
}

int
malloc_heap_free(struct malloc_elem *elem)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;
	struct malloc_heap *heap;
	void *start, *aligned_start, *end, *aligned_end;
	size_t len, aligned_len, page_sz;
	struct rte_memseg_list *msl;
	unsigned int i, n_segs, before_space, after_space;
	int ret;

	if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
		return -1;

	/* elem may be merged with previous element, so keep heap address */
	heap = elem->heap;
	msl = elem->msl;
	page_sz = (size_t)msl->page_sz;

	rte_spinlock_lock(&(heap->lock));

	/* mark element as free */
	elem->state = ELEM_FREE;

	elem = malloc_elem_free(elem);

	/* anything after this is a bonus */
	ret = 0;

	/* ...of which we can't avail if we are in legacy mode */
	if (internal_config.legacy_mem)
		goto free_unlock;

	/* check if we can free any memory back to the system */
	if (elem->size < page_sz)
		goto free_unlock;

	/* probably, but let's make sure, as we may not be using up full page */
	start = elem;
	len = elem->size;
	aligned_start = RTE_PTR_ALIGN_CEIL(start, page_sz);
	end = RTE_PTR_ADD(elem, len);
	aligned_end = RTE_PTR_ALIGN_FLOOR(end, page_sz);

	aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);

	/* can't free anything */
	if (aligned_len < page_sz)
		goto free_unlock;

	/* we can free something. however, some of these pages may be marked as
	 * unfreeable, so also check that as well
	 */
	n_segs = aligned_len / page_sz;
	for (i = 0; i < n_segs; i++) {
		const struct rte_memseg *tmp =
				rte_mem_virt2memseg(aligned_start, msl);

		if (tmp->flags & RTE_MEMSEG_FLAG_DO_NOT_FREE) {
			/* this is an unfreeable segment, so move start */
			aligned_start = RTE_PTR_ADD(tmp->addr, tmp->len);
		}
	}

	/* recalculate length and number of segments */
	aligned_len = RTE_PTR_DIFF(aligned_end, aligned_start);
	n_segs = aligned_len / page_sz;

	/* check if we can still free some pages */
	if (n_segs == 0)
		goto free_unlock;

	/* We're not done yet. We also have to check if by freeing space we will
	 * be leaving free elements that are too small to store new elements.
	 * Check if we have enough space in the beginning and at the end, or if
	 * start/end are exactly page aligned.
	 */
	before_space = RTE_PTR_DIFF(aligned_start, elem);
	after_space = RTE_PTR_DIFF(end, aligned_end);
	if (before_space != 0 &&
			before_space < MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
		/* There is not enough space before start, but we may be able to
		 * move the start forward by one page.
		 */
		if (n_segs == 1)
			goto free_unlock;

		/* move start */
		aligned_start = RTE_PTR_ADD(aligned_start, page_sz);
		aligned_len -= page_sz;
		n_segs--;
	}
	if (after_space != 0 && after_space <
			MALLOC_ELEM_OVERHEAD + MIN_DATA_SIZE) {
		/* There is not enough space after end, but we may be able to
		 * move the end backwards by one page.
		 */
		if (n_segs == 1)
			goto free_unlock;

		/* move end */
		aligned_end = RTE_PTR_SUB(aligned_end, page_sz);
		aligned_len -= page_sz;
		n_segs--;
	}

	/* now we can finally free us some pages */

	rte_rwlock_write_lock(&mcfg->memory_hotplug_lock);

	/*
	 * we allow secondary processes to clear the heap of this allocated
	 * memory because it is safe to do so, as even if notifications about
	 * unmapped pages don't make it to other processes, heap is shared
	 * across all processes, and will become empty of this memory anyway,
	 * and nothing can allocate it back unless primary process will be able
	 * to deliver allocation message to every single running process.
	 */

	malloc_elem_free_list_remove(elem);

	malloc_elem_hide_region(elem, (void *) aligned_start, aligned_len);

	heap->total_size -= aligned_len;

	if (rte_eal_process_type() == RTE_PROC_PRIMARY) {
		/* notify user about changes in memory map */
		eal_memalloc_mem_event_notify(RTE_MEM_EVENT_FREE,
				aligned_start, aligned_len);

		/* don't care if any of this fails */
		malloc_heap_free_pages(aligned_start, aligned_len);

		request_sync();
	} else {
		struct malloc_mp_req req;

		memset(&req, 0, sizeof(req));

		req.t = REQ_TYPE_FREE;
		req.free_req.addr = aligned_start;
		req.free_req.len = aligned_len;

		/*
		 * we request primary to deallocate pages, but we don't do it
		 * in this thread. instead, we notify primary that we would like
		 * to deallocate pages, and this process will receive another
		 * request (in parallel) that will do it for us on another
		 * thread.
		 *
		 * we also don't really care if this succeeds - the data is
		 * already removed from the heap, so it is, for all intents and
		 * purposes, hidden from the rest of DPDK even if some other
		 * process (including this one) may have these pages mapped.
		 *
		 * notifications about deallocated memory happen during sync.
		 */
		request_to_primary(&req);
	}

	RTE_LOG(DEBUG, EAL, "Heap on socket %d was shrunk by %zdMB\n",
		msl->socket_id, aligned_len >> 20ULL);

	rte_rwlock_write_unlock(&mcfg->memory_hotplug_lock);
free_unlock:
	rte_spinlock_unlock(&(heap->lock));
	return ret;
}

int
malloc_heap_resize(struct malloc_elem *elem, size_t size)
{
	int ret;

	if (!malloc_elem_cookies_ok(elem) || elem->state != ELEM_BUSY)
		return -1;

	rte_spinlock_lock(&(elem->heap->lock));

	ret = malloc_elem_resize(elem, size);

	rte_spinlock_unlock(&(elem->heap->lock));

	return ret;
}

/*
 * Function to retrieve data for heap on given socket
 */
int
malloc_heap_get_stats(struct malloc_heap *heap,
		struct rte_malloc_socket_stats *socket_stats)
{
	size_t idx;
	struct malloc_elem *elem;

	rte_spinlock_lock(&heap->lock);

	/* Initialise variables for heap */
	socket_stats->free_count = 0;
	socket_stats->heap_freesz_bytes = 0;
	socket_stats->greatest_free_size = 0;

	/* Iterate through free list */
	for (idx = 0; idx < RTE_HEAP_NUM_FREELISTS; idx++) {
		for (elem = LIST_FIRST(&heap->free_head[idx]);
			!!elem; elem = LIST_NEXT(elem, free_list))
		{
			socket_stats->free_count++;
			socket_stats->heap_freesz_bytes += elem->size;
			if (elem->size > socket_stats->greatest_free_size)
				socket_stats->greatest_free_size = elem->size;
		}
	}
	/* Get stats on overall heap and allocated memory on this heap */
	socket_stats->heap_totalsz_bytes = heap->total_size;
	socket_stats->heap_allocsz_bytes = (socket_stats->heap_totalsz_bytes -
			socket_stats->heap_freesz_bytes);
	socket_stats->alloc_count = heap->alloc_count;

	rte_spinlock_unlock(&heap->lock);
	return 0;
}

/*
 * Function to retrieve data for heap on given socket
 */
void
malloc_heap_dump(struct malloc_heap *heap, FILE *f)
{
	struct malloc_elem *elem;

	rte_spinlock_lock(&heap->lock);

	fprintf(f, "Heap size: 0x%zx\n", heap->total_size);
	fprintf(f, "Heap alloc count: %u\n", heap->alloc_count);

	elem = heap->first;
	while (elem) {
		malloc_elem_dump(elem, f);
		elem = elem->next;
	}

	rte_spinlock_unlock(&heap->lock);
}

int
rte_eal_malloc_heap_init(void)
{
	struct rte_mem_config *mcfg = rte_eal_get_configuration()->mem_config;

	if (register_mp_requests()) {
		RTE_LOG(ERR, EAL, "Couldn't register malloc multiprocess actions\n");
		rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);
		return -1;
	}

	/* unlock mem hotplug here. it's safe for primary as no requests can
	 * even come before primary itself is fully initialized, and secondaries
	 * do not need to initialize the heap.
	 */
	rte_rwlock_read_unlock(&mcfg->memory_hotplug_lock);

	/* secondary process does not need to initialize anything */
	if (rte_eal_process_type() != RTE_PROC_PRIMARY)
		return 0;

	/* add all IOVA-contiguous areas to the heap */
	return rte_memseg_contig_walk(malloc_add_seg, NULL);
}