DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2017-2018 Intel Corporation
 */

#include <inttypes.h>
#include <limits.h>
#include <sys/mman.h>
#include <stdint.h>
#include <errno.h>
#include <sys/file.h>
#include <string.h>

#include <rte_common.h>
#include <rte_log.h>
#include <rte_errno.h>
#include <rte_spinlock.h>
#include <rte_tailq.h>

#include "eal_filesystem.h"
#include "eal_private.h"

#include "rte_fbarray.h"

#define MASK_SHIFT 6ULL
#define MASK_ALIGN (1ULL << MASK_SHIFT)
#define MASK_LEN_TO_IDX(x) ((x) >> MASK_SHIFT)
#define MASK_LEN_TO_MOD(x) ((x) - RTE_ALIGN_FLOOR(x, MASK_ALIGN))
#define MASK_GET_IDX(idx, mod) ((idx << MASK_SHIFT) + mod)

/*
 * This is a mask that is always stored at the end of array, to provide fast
 * way of finding free/used spots without looping through each element.
 */

struct used_mask {
	unsigned int n_masks;
	uint64_t data[];
};

static size_t
calc_mask_size(unsigned int len)
{
	/* mask must be multiple of MASK_ALIGN, even though length of array
	 * itself may not be aligned on that boundary.
	 */
	len = RTE_ALIGN_CEIL(len, MASK_ALIGN);
	return sizeof(struct used_mask) +
			sizeof(uint64_t) * MASK_LEN_TO_IDX(len);
}

static size_t
calc_data_size(size_t page_sz, unsigned int elt_sz, unsigned int len)
{
	size_t data_sz = elt_sz * len;
	size_t msk_sz = calc_mask_size(len);
	return RTE_ALIGN_CEIL(data_sz + msk_sz, page_sz);
}

static struct used_mask *
get_used_mask(void *data, unsigned int elt_sz, unsigned int len)
{
	return (struct used_mask *) RTE_PTR_ADD(data, elt_sz * len);
}

static int
resize_and_map(int fd, void *addr, size_t len)
{
	char path[PATH_MAX];
	void *map_addr;

	if (ftruncate(fd, len)) {
		RTE_LOG(ERR, EAL, "Cannot truncate %s\n", path);
		/* pass errno up the chain */
		rte_errno = errno;
		return -1;
	}

	map_addr = mmap(addr, len, PROT_READ | PROT_WRITE,
			MAP_SHARED | MAP_FIXED, fd, 0);
	if (map_addr != addr) {
		RTE_LOG(ERR, EAL, "mmap() failed: %s\n", strerror(errno));
		/* pass errno up the chain */
		rte_errno = errno;
		return -1;
	}
	return 0;
}

static int
find_next_n(const struct rte_fbarray *arr, unsigned int start, unsigned int n,
	    bool used)
{
	const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
			arr->len);
	unsigned int msk_idx, lookahead_idx, first, first_mod;
	unsigned int last, last_mod;
	uint64_t last_msk, ignore_msk;

	/*
	 * mask only has granularity of MASK_ALIGN, but start may not be aligned
	 * on that boundary, so construct a special mask to exclude anything we
	 * don't want to see to avoid confusing ctz.
	 */
	first = MASK_LEN_TO_IDX(start);
	first_mod = MASK_LEN_TO_MOD(start);
	ignore_msk = ~((1ULL << first_mod) - 1);

	/* array length may not be aligned, so calculate ignore mask for last
	 * mask index.
	 */
	last = MASK_LEN_TO_IDX(arr->len);
	last_mod = MASK_LEN_TO_MOD(arr->len);
	last_msk = ~(-1ULL << last_mod);

	for (msk_idx = first; msk_idx < msk->n_masks; msk_idx++) {
		uint64_t cur_msk, lookahead_msk;
		unsigned int run_start, clz, left;
		bool found = false;
		/*
		 * The process of getting n consecutive bits for arbitrary n is
		 * a bit involved, but here it is in a nutshell:
		 *
		 *  1. let n be the number of consecutive bits we're looking for
		 *  2. check if n can fit in one mask, and if so, do n-1
		 *     rshift-ands to see if there is an appropriate run inside
		 *     our current mask
		 *    2a. if we found a run, bail out early
		 *    2b. if we didn't find a run, proceed
		 *  3. invert the mask and count leading zeroes (that is, count
		 *     how many consecutive set bits we had starting from the
		 *     end of current mask) as k
		 *    3a. if k is 0, continue to next mask
		 *    3b. if k is not 0, we have a potential run
		 *  4. to satisfy our requirements, next mask must have n-k
		 *     consecutive set bits right at the start, so we will do
		 *     (n-k-1) rshift-ands and check if first bit is set.
		 *
		 * Step 4 will need to be repeated if (n-k) > MASK_ALIGN until
		 * we either run out of masks, lose the run, or find what we
		 * were looking for.
		 */
		cur_msk = msk->data[msk_idx];
		left = n;

		/* if we're looking for free spaces, invert the mask */
		if (!used)
			cur_msk = ~cur_msk;

		/* combine current ignore mask with last index ignore mask */
		if (msk_idx == last)
			ignore_msk |= last_msk;

		/* if we have an ignore mask, ignore once */
		if (ignore_msk) {
			cur_msk &= ignore_msk;
			ignore_msk = 0;
		}

		/* if n can fit in within a single mask, do a search */
		if (n <= MASK_ALIGN) {
			uint64_t tmp_msk = cur_msk;
			unsigned int s_idx;
			for (s_idx = 0; s_idx < n - 1; s_idx++)
				tmp_msk &= tmp_msk >> 1ULL;
			/* we found what we were looking for */
			if (tmp_msk != 0) {
				run_start = __builtin_ctzll(tmp_msk);
				return MASK_GET_IDX(msk_idx, run_start);
			}
		}

		/*
		 * we didn't find our run within the mask, or n > MASK_ALIGN,
		 * so we're going for plan B.
		 */

		/* count leading zeroes on inverted mask */
		if (~cur_msk == 0)
			clz = sizeof(cur_msk) * 8;
		else
			clz = __builtin_clzll(~cur_msk);

		/* if there aren't any runs at the end either, just continue */
		if (clz == 0)
			continue;

		/* we have a partial run at the end, so try looking ahead */
		run_start = MASK_ALIGN - clz;
		left -= clz;

		for (lookahead_idx = msk_idx + 1; lookahead_idx < msk->n_masks;
				lookahead_idx++) {
			unsigned int s_idx, need;
			lookahead_msk = msk->data[lookahead_idx];

			/* if we're looking for free space, invert the mask */
			if (!used)
				lookahead_msk = ~lookahead_msk;

			/* figure out how many consecutive bits we need here */
			need = RTE_MIN(left, MASK_ALIGN);

			for (s_idx = 0; s_idx < need - 1; s_idx++)
				lookahead_msk &= lookahead_msk >> 1ULL;

			/* if first bit is not set, we've lost the run */
			if ((lookahead_msk & 1) == 0) {
				/*
				 * we've scanned this far, so we know there are
				 * no runs in the space we've lookahead-scanned
				 * as well, so skip that on next iteration.
				 */
				ignore_msk = ~((1ULL << need) - 1);
				msk_idx = lookahead_idx;
				break;
			}

			left -= need;

			/* check if we've found what we were looking for */
			if (left == 0) {
				found = true;
				break;
			}
		}

		/* we didn't find anything, so continue */
		if (!found)
			continue;

		return MASK_GET_IDX(msk_idx, run_start);
	}
	/* we didn't find anything */
	rte_errno = used ? -ENOENT : -ENOSPC;
	return -1;
}

static int
find_next(const struct rte_fbarray *arr, unsigned int start, bool used)
{
	const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
			arr->len);
	unsigned int idx, first, first_mod;
	unsigned int last, last_mod;
	uint64_t last_msk, ignore_msk;

	/*
	 * mask only has granularity of MASK_ALIGN, but start may not be aligned
	 * on that boundary, so construct a special mask to exclude anything we
	 * don't want to see to avoid confusing ctz.
	 */
	first = MASK_LEN_TO_IDX(start);
	first_mod = MASK_LEN_TO_MOD(start);
	ignore_msk = ~((1ULL << first_mod) - 1ULL);

	/* array length may not be aligned, so calculate ignore mask for last
	 * mask index.
	 */
	last = MASK_LEN_TO_IDX(arr->len);
	last_mod = MASK_LEN_TO_MOD(arr->len);
	last_msk = ~(-(1ULL) << last_mod);

	for (idx = first; idx < msk->n_masks; idx++) {
		uint64_t cur = msk->data[idx];
		int found;

		/* if we're looking for free entries, invert mask */
		if (!used)
			cur = ~cur;

		if (idx == last)
			cur &= last_msk;

		/* ignore everything before start on first iteration */
		if (idx == first)
			cur &= ignore_msk;

		/* check if we have any entries */
		if (cur == 0)
			continue;

		/*
		 * find first set bit - that will correspond to whatever it is
		 * that we're looking for.
		 */
		found = __builtin_ctzll(cur);
		return MASK_GET_IDX(idx, found);
	}
	/* we didn't find anything */
	rte_errno = used ? -ENOENT : -ENOSPC;
	return -1;
}

static int
find_contig(const struct rte_fbarray *arr, unsigned int start, bool used)
{
	const struct used_mask *msk = get_used_mask(arr->data, arr->elt_sz,
			arr->len);
	unsigned int idx, first, first_mod;
	unsigned int last, last_mod;
	uint64_t last_msk;
	unsigned int need_len, result = 0;

	/* array length may not be aligned, so calculate ignore mask for last
	 * mask index.
	 */
	last = MASK_LEN_TO_IDX(arr->len);
	last_mod = MASK_LEN_TO_MOD(arr->len);
	last_msk = ~(-(1ULL) << last_mod);

	first = MASK_LEN_TO_IDX(start);
	first_mod = MASK_LEN_TO_MOD(start);
	for (idx = first; idx < msk->n_masks; idx++, result += need_len) {
		uint64_t cur = msk->data[idx];
		unsigned int run_len;

		need_len = MASK_ALIGN;

		/* if we're looking for free entries, invert mask */
		if (!used)
			cur = ~cur;

		/* if this is last mask, ignore everything after last bit */
		if (idx == last)
			cur &= last_msk;

		/* ignore everything before start on first iteration */
		if (idx == first) {
			cur >>= first_mod;
			/* at the start, we don't need the full mask len */
			need_len -= first_mod;
		}

		/* we will be looking for zeroes, so invert the mask */
		cur = ~cur;

		/* if mask is zero, we have a complete run */
		if (cur == 0)
			continue;

		/*
		 * see if current run ends before mask end.
		 */
		run_len = __builtin_ctzll(cur);

		/* add however many zeroes we've had in the last run and quit */
		if (run_len < need_len) {
			result += run_len;
			break;
		}
	}
	return result;
}

static int
set_used(struct rte_fbarray *arr, unsigned int idx, bool used)
{
	struct used_mask *msk;
	uint64_t msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);
	unsigned int msk_idx = MASK_LEN_TO_IDX(idx);
	bool already_used;
	int ret = -1;

	if (arr == NULL || idx >= arr->len) {
		rte_errno = EINVAL;
		return -1;
	}
	msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
	ret = 0;

	/* prevent array from changing under us */
	rte_rwlock_write_lock(&arr->rwlock);

	already_used = (msk->data[msk_idx] & msk_bit) != 0;

	/* nothing to be done */
	if (used == already_used)
		goto out;

	if (used) {
		msk->data[msk_idx] |= msk_bit;
		arr->count++;
	} else {
		msk->data[msk_idx] &= ~msk_bit;
		arr->count--;
	}
out:
	rte_rwlock_write_unlock(&arr->rwlock);

	return ret;
}

static int
fully_validate(const char *name, unsigned int elt_sz, unsigned int len)
{
	if (name == NULL || elt_sz == 0 || len == 0 || len > INT_MAX) {
		rte_errno = EINVAL;
		return -1;
	}

	if (strnlen(name, RTE_FBARRAY_NAME_LEN) == RTE_FBARRAY_NAME_LEN) {
		rte_errno = ENAMETOOLONG;
		return -1;
	}
	return 0;
}

int __rte_experimental
rte_fbarray_init(struct rte_fbarray *arr, const char *name, unsigned int len,
		unsigned int elt_sz)
{
	size_t page_sz, mmap_len;
	char path[PATH_MAX];
	struct used_mask *msk;
	void *data = NULL;
	int fd = -1;

	if (arr == NULL) {
		rte_errno = EINVAL;
		return -1;
	}

	if (fully_validate(name, elt_sz, len))
		return -1;

	page_sz = sysconf(_SC_PAGESIZE);
	if (page_sz == (size_t)-1)
		goto fail;

	/* calculate our memory limits */
	mmap_len = calc_data_size(page_sz, elt_sz, len);

	data = eal_get_virtual_area(NULL, &mmap_len, page_sz, 0, 0);
	if (data == NULL)
		goto fail;

	eal_get_fbarray_path(path, sizeof(path), name);

	/*
	 * Each fbarray is unique to process namespace, i.e. the filename
	 * depends on process prefix. Try to take out a lock and see if we
	 * succeed. If we don't, someone else is using it already.
	 */
	fd = open(path, O_CREAT | O_RDWR, 0600);
	if (fd < 0) {
		RTE_LOG(DEBUG, EAL, "%s(): couldn't open %s: %s\n", __func__,
				path, strerror(errno));
		rte_errno = errno;
		goto fail;
	} else if (flock(fd, LOCK_EX | LOCK_NB)) {
		RTE_LOG(DEBUG, EAL, "%s(): couldn't lock %s: %s\n", __func__,
				path, strerror(errno));
		rte_errno = EBUSY;
		goto fail;
	}

	/* take out a non-exclusive lock, so that other processes could still
	 * attach to it, but no other process could reinitialize it.
	 */
	if (flock(fd, LOCK_SH | LOCK_NB)) {
		rte_errno = errno;
		goto fail;
	}

	if (resize_and_map(fd, data, mmap_len))
		goto fail;

	/* we've mmap'ed the file, we can now close the fd */
	close(fd);

	/* initialize the data */
	memset(data, 0, mmap_len);

	/* populate data structure */
	strlcpy(arr->name, name, sizeof(arr->name));
	arr->data = data;
	arr->len = len;
	arr->elt_sz = elt_sz;
	arr->count = 0;

	msk = get_used_mask(data, elt_sz, len);
	msk->n_masks = MASK_LEN_TO_IDX(RTE_ALIGN_CEIL(len, MASK_ALIGN));

	rte_rwlock_init(&arr->rwlock);

	return 0;
fail:
	if (data)
		munmap(data, mmap_len);
	if (fd >= 0)
		close(fd);
	return -1;
}

int __rte_experimental
rte_fbarray_attach(struct rte_fbarray *arr)
{
	size_t page_sz, mmap_len;
	char path[PATH_MAX];
	void *data = NULL;
	int fd = -1;

	if (arr == NULL) {
		rte_errno = EINVAL;
		return -1;
	}

	/*
	 * we don't need to synchronize attach as two values we need (element
	 * size and array length) are constant for the duration of life of
	 * the array, so the parts we care about will not race.
	 */

	if (fully_validate(arr->name, arr->elt_sz, arr->len))
		return -1;

	page_sz = sysconf(_SC_PAGESIZE);
	if (page_sz == (size_t)-1)
		goto fail;

	mmap_len = calc_data_size(page_sz, arr->elt_sz, arr->len);

	data = eal_get_virtual_area(arr->data, &mmap_len, page_sz, 0, 0);
	if (data == NULL)
		goto fail;

	eal_get_fbarray_path(path, sizeof(path), arr->name);

	fd = open(path, O_RDWR);
	if (fd < 0) {
		rte_errno = errno;
		goto fail;
	}

	/* lock the file, to let others know we're using it */
	if (flock(fd, LOCK_SH | LOCK_NB)) {
		rte_errno = errno;
		goto fail;
	}

	if (resize_and_map(fd, data, mmap_len))
		goto fail;

	close(fd);

	/* we're done */

	return 0;
fail:
	if (data)
		munmap(data, mmap_len);
	if (fd >= 0)
		close(fd);
	return -1;
}

int __rte_experimental
rte_fbarray_detach(struct rte_fbarray *arr)
{
	if (arr == NULL) {
		rte_errno = EINVAL;
		return -1;
	}

	/*
	 * we don't need to synchronize detach as two values we need (element
	 * size and total capacity) are constant for the duration of life of
	 * the array, so the parts we care about will not race. if the user is
	 * detaching while doing something else in the same process, we can't
	 * really do anything about it, things will blow up either way.
	 */

	size_t page_sz = sysconf(_SC_PAGESIZE);

	if (page_sz == (size_t)-1)
		return -1;

	/* this may already be unmapped (e.g. repeated call from previously
	 * failed destroy(), but this is on user, we can't (easily) know if this
	 * is still mapped.
	 */
	munmap(arr->data, calc_data_size(page_sz, arr->elt_sz, arr->len));

	return 0;
}

int __rte_experimental
rte_fbarray_destroy(struct rte_fbarray *arr)
{
	int fd, ret;
	char path[PATH_MAX];

	ret = rte_fbarray_detach(arr);
	if (ret)
		return ret;

	/* try deleting the file */
	eal_get_fbarray_path(path, sizeof(path), arr->name);

	fd = open(path, O_RDONLY);
	if (fd < 0) {
		RTE_LOG(ERR, EAL, "Could not open fbarray file: %s\n",
			strerror(errno));
		return -1;
	}
	if (flock(fd, LOCK_EX | LOCK_NB)) {
		RTE_LOG(DEBUG, EAL, "Cannot destroy fbarray - another process is using it\n");
		rte_errno = EBUSY;
		ret = -1;
	} else {
		ret = 0;
		unlink(path);
		memset(arr, 0, sizeof(*arr));
	}
	close(fd);

	return ret;
}

void * __rte_experimental
rte_fbarray_get(const struct rte_fbarray *arr, unsigned int idx)
{
	void *ret = NULL;
	if (arr == NULL) {
		rte_errno = EINVAL;
		return NULL;
	}

	if (idx >= arr->len) {
		rte_errno = EINVAL;
		return NULL;
	}

	ret = RTE_PTR_ADD(arr->data, idx * arr->elt_sz);

	return ret;
}

int __rte_experimental
rte_fbarray_set_used(struct rte_fbarray *arr, unsigned int idx)
{
	return set_used(arr, idx, true);
}

int __rte_experimental
rte_fbarray_set_free(struct rte_fbarray *arr, unsigned int idx)
{
	return set_used(arr, idx, false);
}

int __rte_experimental
rte_fbarray_is_used(struct rte_fbarray *arr, unsigned int idx)
{
	struct used_mask *msk;
	int msk_idx;
	uint64_t msk_bit;
	int ret = -1;

	if (arr == NULL || idx >= arr->len) {
		rte_errno = EINVAL;
		return -1;
	}

	/* prevent array from changing under us */
	rte_rwlock_read_lock(&arr->rwlock);

	msk = get_used_mask(arr->data, arr->elt_sz, arr->len);
	msk_idx = MASK_LEN_TO_IDX(idx);
	msk_bit = 1ULL << MASK_LEN_TO_MOD(idx);

	ret = (msk->data[msk_idx] & msk_bit) != 0;

	rte_rwlock_read_unlock(&arr->rwlock);

	return ret;
}

int __rte_experimental
rte_fbarray_find_next_free(struct rte_fbarray *arr, unsigned int start)
{
	int ret = -1;

	if (arr == NULL || start >= arr->len) {
		rte_errno = EINVAL;
		return -1;
	}

	/* prevent array from changing under us */
	rte_rwlock_read_lock(&arr->rwlock);

	if (arr->len == arr->count) {
		rte_errno = ENOSPC;
		goto out;
	}

	ret = find_next(arr, start, false);
out:
	rte_rwlock_read_unlock(&arr->rwlock);
	return ret;
}

int __rte_experimental
rte_fbarray_find_next_used(struct rte_fbarray *arr, unsigned int start)
{
	int ret = -1;

	if (arr == NULL || start >= arr->len) {
		rte_errno = EINVAL;
		return -1;
	}

	/* prevent array from changing under us */
	rte_rwlock_read_lock(&arr->rwlock);

	if (arr->count == 0) {
		rte_errno = ENOENT;
		goto out;
	}

	ret = find_next(arr, start, true);
out:
	rte_rwlock_read_unlock(&arr->rwlock);
	return ret;
}

int __rte_experimental
rte_fbarray_find_next_n_free(struct rte_fbarray *arr, unsigned int start,
		unsigned int n)
{
	int ret = -1;

	if (arr == NULL || start >= arr->len || n > arr->len) {
		rte_errno = EINVAL;
		return -1;
	}

	/* prevent array from changing under us */
	rte_rwlock_read_lock(&arr->rwlock);

	if (arr->len == arr->count || arr->len - arr->count < n) {
		rte_errno = ENOSPC;
		goto out;
	}

	ret = find_next_n(arr, start, n, false);
out:
	rte_rwlock_read_unlock(&arr->rwlock);
	return ret;
}

int __rte_experimental
rte_fbarray_find_next_n_used(struct rte_fbarray *arr, unsigned int start,
		unsigned int n)
{
	int ret = -1;

	if (arr == NULL || start >= arr->len || n > arr->len) {
		rte_errno = EINVAL;
		return -1;
	}

	/* prevent array from changing under us */
	rte_rwlock_read_lock(&arr->rwlock);

	if (arr->count < n) {
		rte_errno = ENOENT;
		goto out;
	}

	ret = find_next_n(arr, start, n, true);
out:
	rte_rwlock_read_unlock(&arr->rwlock);
	return ret;
}

int __rte_experimental
rte_fbarray_find_contig_free(struct rte_fbarray *arr, unsigned int start)
{
	int ret = -1;

	if (arr == NULL || start >= arr->len) {
		rte_errno = EINVAL;
		return -1;
	}

	/* prevent array from changing under us */
	rte_rwlock_read_lock(&arr->rwlock);

	if (arr->len == arr->count) {
		rte_errno = ENOSPC;
		goto out;
	}

	if (arr->count == 0) {
		ret = arr->len - start;
		goto out;
	}

	ret = find_contig(arr, start, false);
out:
	rte_rwlock_read_unlock(&arr->rwlock);
	return ret;
}

int __rte_experimental
rte_fbarray_find_contig_used(struct rte_fbarray *arr, unsigned int start)
{
	int ret = -1;

	if (arr == NULL || start >= arr->len) {
		rte_errno = EINVAL;
		return -1;
	}

	/* prevent array from changing under us */
	rte_rwlock_read_lock(&arr->rwlock);

	ret = find_contig(arr, start, true);

	rte_rwlock_read_unlock(&arr->rwlock);
	return ret;
}

int __rte_experimental
rte_fbarray_find_idx(const struct rte_fbarray *arr, const void *elt)
{
	void *end;
	int ret = -1;

	/*
	 * no need to synchronize as it doesn't matter if underlying data
	 * changes - we're doing pointer arithmetic here.
	 */

	if (arr == NULL || elt == NULL) {
		rte_errno = EINVAL;
		return -1;
	}
	end = RTE_PTR_ADD(arr->data, arr->elt_sz * arr->len);
	if (elt < arr->data || elt >= end) {
		rte_errno = EINVAL;
		return -1;
	}

	ret = RTE_PTR_DIFF(elt, arr->data) / arr->elt_sz;

	return ret;
}

void __rte_experimental
rte_fbarray_dump_metadata(struct rte_fbarray *arr, FILE *f)
{
	struct used_mask *msk;
	unsigned int i;

	if (arr == NULL || f == NULL) {
		rte_errno = EINVAL;
		return;
	}

	if (fully_validate(arr->name, arr->elt_sz, arr->len)) {
		fprintf(f, "Invalid file-backed array\n");
		goto out;
	}

	/* prevent array from changing under us */
	rte_rwlock_read_lock(&arr->rwlock);

	fprintf(f, "File-backed array: %s\n", arr->name);
	fprintf(f, "size: %i occupied: %i elt_sz: %i\n",
			arr->len, arr->count, arr->elt_sz);

	msk = get_used_mask(arr->data, arr->elt_sz, arr->len);

	for (i = 0; i < msk->n_masks; i++)
		fprintf(f, "msk idx %i: 0x%016" PRIx64 "\n", i, msk->data[i]);
out:
	rte_rwlock_read_unlock(&arr->rwlock);
}