DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
/*-
 * Copyright (c) 2016 Solarflare Communications Inc.
 * All rights reserved.
 *
 * This software was jointly developed between OKTET Labs (under contract
 * for Solarflare) and Solarflare Communications, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "sfc.h"
#include "sfc_debug.h"
#include "sfc_log.h"
#include "sfc_ev.h"
#include "sfc_tx.h"
#include "sfc_tweak.h"

/*
 * Maximum number of TX queue flush attempts in case of
 * failure or flush timeout
 */
#define SFC_TX_QFLUSH_ATTEMPTS		(3)

/*
 * Time to wait between event queue polling attempts when waiting for TX
 * queue flush done or flush failed events
 */
#define SFC_TX_QFLUSH_POLL_WAIT_MS	(1)

/*
 * Maximum number of event queue polling attempts when waiting for TX queue
 * flush done or flush failed events; it defines TX queue flush attempt timeout
 * together with SFC_TX_QFLUSH_POLL_WAIT_MS
 */
#define SFC_TX_QFLUSH_POLL_ATTEMPTS	(2000)

static int
sfc_tx_qcheck_conf(struct sfc_adapter *sa, uint16_t nb_tx_desc,
		   const struct rte_eth_txconf *tx_conf)
{
	unsigned int flags = tx_conf->txq_flags;
	const efx_nic_cfg_t *encp = efx_nic_cfg_get(sa->nic);
	int rc = 0;

	if (tx_conf->tx_rs_thresh != 0) {
		sfc_err(sa, "RS bit in transmit descriptor is not supported");
		rc = EINVAL;
	}

	if (tx_conf->tx_free_thresh > EFX_TXQ_LIMIT(nb_tx_desc)) {
		sfc_err(sa,
			"TxQ free threshold too large: %u vs maximum %u",
			tx_conf->tx_free_thresh, EFX_TXQ_LIMIT(nb_tx_desc));
		rc = EINVAL;
	}

	if (tx_conf->tx_thresh.pthresh != 0 ||
	    tx_conf->tx_thresh.hthresh != 0 ||
	    tx_conf->tx_thresh.wthresh != 0) {
		sfc_err(sa,
			"prefetch/host/writeback thresholds are not supported");
		rc = EINVAL;
	}

	if (!encp->enc_hw_tx_insert_vlan_enabled &&
	    (flags & ETH_TXQ_FLAGS_NOVLANOFFL) == 0) {
		sfc_err(sa, "VLAN offload is not supported");
		rc = EINVAL;
	}

	if ((flags & ETH_TXQ_FLAGS_NOXSUMSCTP) == 0) {
		sfc_err(sa, "SCTP offload is not supported");
		rc = EINVAL;
	}

	/* We either perform both TCP and UDP offload, or no offload at all */
	if (((flags & ETH_TXQ_FLAGS_NOXSUMTCP) == 0) !=
	    ((flags & ETH_TXQ_FLAGS_NOXSUMUDP) == 0)) {
		sfc_err(sa, "TCP and UDP offloads can't be set independently");
		rc = EINVAL;
	}

	return rc;
}

void
sfc_tx_qflush_done(struct sfc_txq *txq)
{
	txq->state |= SFC_TXQ_FLUSHED;
	txq->state &= ~SFC_TXQ_FLUSHING;
}

static void
sfc_tx_reap(struct sfc_txq *txq)
{
	unsigned int    completed;


	sfc_ev_qpoll(txq->evq);

	for (completed = txq->completed;
	     completed != txq->pending; completed++) {
		struct sfc_tx_sw_desc *txd;

		txd = &txq->sw_ring[completed & txq->ptr_mask];

		if (txd->mbuf != NULL) {
			rte_pktmbuf_free(txd->mbuf);
			txd->mbuf = NULL;
		}
	}

	txq->completed = completed;
}

int
sfc_tx_qinit(struct sfc_adapter *sa, unsigned int sw_index,
	     uint16_t nb_tx_desc, unsigned int socket_id,
	     const struct rte_eth_txconf *tx_conf)
{
	struct sfc_txq_info *txq_info;
	struct sfc_evq *evq;
	struct sfc_txq *txq;
	unsigned int evq_index = sfc_evq_index_by_txq_sw_index(sa, sw_index);
	int rc = 0;

	sfc_log_init(sa, "TxQ = %u", sw_index);

	rc = sfc_tx_qcheck_conf(sa, nb_tx_desc, tx_conf);
	if (rc != 0)
		goto fail_bad_conf;

	SFC_ASSERT(sw_index < sa->txq_count);
	txq_info = &sa->txq_info[sw_index];

	SFC_ASSERT(nb_tx_desc <= sa->txq_max_entries);
	txq_info->entries = nb_tx_desc;

	rc = sfc_ev_qinit(sa, evq_index, txq_info->entries, socket_id);
	if (rc != 0)
		goto fail_ev_qinit;

	evq = sa->evq_info[evq_index].evq;

	rc = ENOMEM;
	txq = rte_zmalloc_socket("sfc-txq", sizeof(*txq), 0, socket_id);
	if (txq == NULL)
		goto fail_txq_alloc;

	rc = sfc_dma_alloc(sa, "txq", sw_index, EFX_TXQ_SIZE(txq_info->entries),
			   socket_id, &txq->mem);
	if (rc != 0)
		goto fail_dma_alloc;

	rc = ENOMEM;
	txq->pend_desc = rte_calloc_socket("sfc-txq-pend-desc",
					   EFX_TXQ_LIMIT(txq_info->entries),
					   sizeof(efx_desc_t), 0, socket_id);
	if (txq->pend_desc == NULL)
		goto fail_pend_desc_alloc;

	rc = ENOMEM;
	txq->sw_ring = rte_calloc_socket("sfc-txq-desc", txq_info->entries,
					 sizeof(*txq->sw_ring), 0, socket_id);
	if (txq->sw_ring == NULL)
		goto fail_desc_alloc;

	if (sa->tso) {
		rc = sfc_tso_alloc_tsoh_objs(txq->sw_ring, txq_info->entries,
					     socket_id);
		if (rc != 0)
			goto fail_alloc_tsoh_objs;
	}

	txq->state = SFC_TXQ_INITIALIZED;
	txq->ptr_mask = txq_info->entries - 1;
	txq->free_thresh = (tx_conf->tx_free_thresh) ? tx_conf->tx_free_thresh :
						     SFC_TX_DEFAULT_FREE_THRESH;
	txq->hw_index = sw_index;
	txq->flags = tx_conf->txq_flags;
	txq->evq = evq;

	evq->txq = txq;

	txq_info->txq = txq;
	txq_info->deferred_start = (tx_conf->tx_deferred_start != 0);

	return 0;

fail_alloc_tsoh_objs:
	rte_free(txq->sw_ring);

fail_desc_alloc:
	rte_free(txq->pend_desc);

fail_pend_desc_alloc:
	sfc_dma_free(sa, &txq->mem);

fail_dma_alloc:
	rte_free(txq);

fail_txq_alloc:
	sfc_ev_qfini(sa, evq_index);

fail_ev_qinit:
	txq_info->entries = 0;

fail_bad_conf:
	sfc_log_init(sa, "failed (TxQ = %u, rc = %d)", sw_index, rc);
	return rc;
}

void
sfc_tx_qfini(struct sfc_adapter *sa, unsigned int sw_index)
{
	struct sfc_txq_info *txq_info;
	struct sfc_txq *txq;

	sfc_log_init(sa, "TxQ = %u", sw_index);

	SFC_ASSERT(sw_index < sa->txq_count);
	txq_info = &sa->txq_info[sw_index];

	txq = txq_info->txq;
	SFC_ASSERT(txq != NULL);
	SFC_ASSERT(txq->state == SFC_TXQ_INITIALIZED);

	sfc_tso_free_tsoh_objs(txq->sw_ring, txq_info->entries);

	txq_info->txq = NULL;
	txq_info->entries = 0;

	rte_free(txq->sw_ring);
	rte_free(txq->pend_desc);
	sfc_dma_free(sa, &txq->mem);
	rte_free(txq);
}

static int
sfc_tx_qinit_info(struct sfc_adapter *sa, unsigned int sw_index)
{
	sfc_log_init(sa, "TxQ = %u", sw_index);

	return 0;
}

static int
sfc_tx_check_mode(struct sfc_adapter *sa, const struct rte_eth_txmode *txmode)
{
	int rc = 0;

	switch (txmode->mq_mode) {
	case ETH_MQ_TX_NONE:
		break;
	default:
		sfc_err(sa, "Tx multi-queue mode %u not supported",
			txmode->mq_mode);
		rc = EINVAL;
	}

	/*
	 * These features are claimed to be i40e-specific,
	 * but it does make sense to double-check their absence
	 */
	if (txmode->hw_vlan_reject_tagged) {
		sfc_err(sa, "Rejecting tagged packets not supported");
		rc = EINVAL;
	}

	if (txmode->hw_vlan_reject_untagged) {
		sfc_err(sa, "Rejecting untagged packets not supported");
		rc = EINVAL;
	}

	if (txmode->hw_vlan_insert_pvid) {
		sfc_err(sa, "Port-based VLAN insertion not supported");
		rc = EINVAL;
	}

	return rc;
}

int
sfc_tx_init(struct sfc_adapter *sa)
{
	const struct rte_eth_conf *dev_conf = &sa->eth_dev->data->dev_conf;
	unsigned int sw_index;
	int rc = 0;

	rc = sfc_tx_check_mode(sa, &dev_conf->txmode);
	if (rc != 0)
		goto fail_check_mode;

	sa->txq_count = sa->eth_dev->data->nb_tx_queues;

	sa->txq_info = rte_calloc_socket("sfc-txqs", sa->txq_count,
					 sizeof(sa->txq_info[0]), 0,
					 sa->socket_id);
	if (sa->txq_info == NULL)
		goto fail_txqs_alloc;

	for (sw_index = 0; sw_index < sa->txq_count; ++sw_index) {
		rc = sfc_tx_qinit_info(sa, sw_index);
		if (rc != 0)
			goto fail_tx_qinit_info;
	}

	return 0;

fail_tx_qinit_info:
	rte_free(sa->txq_info);
	sa->txq_info = NULL;

fail_txqs_alloc:
	sa->txq_count = 0;

fail_check_mode:
	sfc_log_init(sa, "failed (rc = %d)", rc);
	return rc;
}

void
sfc_tx_fini(struct sfc_adapter *sa)
{
	int sw_index;

	sw_index = sa->txq_count;
	while (--sw_index >= 0) {
		if (sa->txq_info[sw_index].txq != NULL)
			sfc_tx_qfini(sa, sw_index);
	}

	rte_free(sa->txq_info);
	sa->txq_info = NULL;
	sa->txq_count = 0;
}

int
sfc_tx_qstart(struct sfc_adapter *sa, unsigned int sw_index)
{
	struct rte_eth_dev_data *dev_data;
	struct sfc_txq_info *txq_info;
	struct sfc_txq *txq;
	struct sfc_evq *evq;
	uint16_t flags;
	unsigned int desc_index;
	int rc = 0;

	sfc_log_init(sa, "TxQ = %u", sw_index);

	SFC_ASSERT(sw_index < sa->txq_count);
	txq_info = &sa->txq_info[sw_index];

	txq = txq_info->txq;

	SFC_ASSERT(txq->state == SFC_TXQ_INITIALIZED);

	evq = txq->evq;

	rc = sfc_ev_qstart(sa, evq->evq_index);
	if (rc != 0)
		goto fail_ev_qstart;

	/*
	 * It seems that DPDK has no controls regarding IPv4 offloads,
	 * hence, we always enable it here
	 */
	if ((txq->flags & ETH_TXQ_FLAGS_NOXSUMTCP) ||
	    (txq->flags & ETH_TXQ_FLAGS_NOXSUMUDP)) {
		flags = EFX_TXQ_CKSUM_IPV4;
	} else {
		flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP;

		if (sa->tso)
			flags |= EFX_TXQ_FATSOV2;
	}

	rc = efx_tx_qcreate(sa->nic, sw_index, 0, &txq->mem,
			    txq_info->entries, 0 /* not used on EF10 */,
			    flags, evq->common,
			    &txq->common, &desc_index);
	if (rc != 0) {
		if (sa->tso && (rc == ENOSPC))
			sfc_err(sa, "ran out of TSO contexts");

		goto fail_tx_qcreate;
	}

	txq->added = txq->pending = txq->completed = desc_index;
	txq->hw_vlan_tci = 0;

	efx_tx_qenable(txq->common);

	txq->state |= (SFC_TXQ_STARTED | SFC_TXQ_RUNNING);

	/*
	 * It seems to be used by DPDK for debug purposes only ('rte_ether')
	 */
	dev_data = sa->eth_dev->data;
	dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STARTED;

	return 0;

fail_tx_qcreate:
	sfc_ev_qstop(sa, evq->evq_index);

fail_ev_qstart:
	return rc;
}

void
sfc_tx_qstop(struct sfc_adapter *sa, unsigned int sw_index)
{
	struct rte_eth_dev_data *dev_data;
	struct sfc_txq_info *txq_info;
	struct sfc_txq *txq;
	unsigned int retry_count;
	unsigned int wait_count;
	unsigned int txds;

	sfc_log_init(sa, "TxQ = %u", sw_index);

	SFC_ASSERT(sw_index < sa->txq_count);
	txq_info = &sa->txq_info[sw_index];

	txq = txq_info->txq;

	if (txq->state == SFC_TXQ_INITIALIZED)
		return;

	SFC_ASSERT(txq->state & SFC_TXQ_STARTED);

	txq->state &= ~SFC_TXQ_RUNNING;

	/*
	 * Retry TX queue flushing in case of flush failed or
	 * timeout; in the worst case it can delay for 6 seconds
	 */
	for (retry_count = 0;
	     ((txq->state & SFC_TXQ_FLUSHED) == 0) &&
	     (retry_count < SFC_TX_QFLUSH_ATTEMPTS);
	     ++retry_count) {
		if (efx_tx_qflush(txq->common) != 0) {
			txq->state |= SFC_TXQ_FLUSHING;
			break;
		}

		/*
		 * Wait for TX queue flush done or flush failed event at least
		 * SFC_TX_QFLUSH_POLL_WAIT_MS milliseconds and not more
		 * than 2 seconds (SFC_TX_QFLUSH_POLL_WAIT_MS multiplied
		 * by SFC_TX_QFLUSH_POLL_ATTEMPTS)
		 */
		wait_count = 0;
		do {
			rte_delay_ms(SFC_TX_QFLUSH_POLL_WAIT_MS);
			sfc_ev_qpoll(txq->evq);
		} while ((txq->state & SFC_TXQ_FLUSHING) &&
			 wait_count++ < SFC_TX_QFLUSH_POLL_ATTEMPTS);

		if (txq->state & SFC_TXQ_FLUSHING)
			sfc_err(sa, "TxQ %u flush timed out", sw_index);

		if (txq->state & SFC_TXQ_FLUSHED)
			sfc_info(sa, "TxQ %u flushed", sw_index);
	}

	sfc_tx_reap(txq);

	for (txds = 0; txds < txq_info->entries; txds++) {
		if (txq->sw_ring[txds].mbuf != NULL) {
			rte_pktmbuf_free(txq->sw_ring[txds].mbuf);
			txq->sw_ring[txds].mbuf = NULL;
		}
	}

	txq->state = SFC_TXQ_INITIALIZED;

	efx_tx_qdestroy(txq->common);

	sfc_ev_qstop(sa, txq->evq->evq_index);

	/*
	 * It seems to be used by DPDK for debug purposes only ('rte_ether')
	 */
	dev_data = sa->eth_dev->data;
	dev_data->tx_queue_state[sw_index] = RTE_ETH_QUEUE_STATE_STOPPED;
}

int
sfc_tx_start(struct sfc_adapter *sa)
{
	unsigned int sw_index;
	int rc = 0;

	sfc_log_init(sa, "txq_count = %u", sa->txq_count);

	if (sa->tso) {
		if (!efx_nic_cfg_get(sa->nic)->enc_fw_assisted_tso_v2_enabled) {
			sfc_warn(sa, "TSO support was unable to be restored");
			sa->tso = B_FALSE;
		}
	}

	rc = efx_tx_init(sa->nic);
	if (rc != 0)
		goto fail_efx_tx_init;

	for (sw_index = 0; sw_index < sa->txq_count; ++sw_index) {
		if (!(sa->txq_info[sw_index].deferred_start) ||
		    sa->txq_info[sw_index].deferred_started) {
			rc = sfc_tx_qstart(sa, sw_index);
			if (rc != 0)
				goto fail_tx_qstart;
		}
	}

	return 0;

fail_tx_qstart:
	while (sw_index-- > 0)
		sfc_tx_qstop(sa, sw_index);

	efx_tx_fini(sa->nic);

fail_efx_tx_init:
	sfc_log_init(sa, "failed (rc = %d)", rc);
	return rc;
}

void
sfc_tx_stop(struct sfc_adapter *sa)
{
	unsigned int sw_index;

	sfc_log_init(sa, "txq_count = %u", sa->txq_count);

	sw_index = sa->txq_count;
	while (sw_index-- > 0) {
		if (sa->txq_info[sw_index].txq != NULL)
			sfc_tx_qstop(sa, sw_index);
	}

	efx_tx_fini(sa->nic);
}

/*
 * The function is used to insert or update VLAN tag;
 * the firmware has state of the firmware tag to insert per TxQ
 * (controlled by option descriptors), hence, if the tag of the
 * packet to be sent is different from one remembered by the firmware,
 * the function will update it
 */
static unsigned int
sfc_tx_maybe_insert_tag(struct sfc_txq *txq, struct rte_mbuf *m,
			efx_desc_t **pend)
{
	uint16_t this_tag = ((m->ol_flags & PKT_TX_VLAN_PKT) ?
			     m->vlan_tci : 0);

	if (this_tag == txq->hw_vlan_tci)
		return 0;

	/*
	 * The expression inside SFC_ASSERT() is not desired to be checked in
	 * a non-debug build because it might be too expensive on the data path
	 */
	SFC_ASSERT(efx_nic_cfg_get(txq->evq->sa->nic)->enc_hw_tx_insert_vlan_enabled);

	efx_tx_qdesc_vlantci_create(txq->common, rte_cpu_to_be_16(this_tag),
				    *pend);
	(*pend)++;
	txq->hw_vlan_tci = this_tag;

	return 1;
}

uint16_t
sfc_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
	struct sfc_txq *txq = (struct sfc_txq *)tx_queue;
	unsigned int added = txq->added;
	unsigned int pushed = added;
	unsigned int pkts_sent = 0;
	efx_desc_t *pend = &txq->pend_desc[0];
	const unsigned int hard_max_fill = EFX_TXQ_LIMIT(txq->ptr_mask + 1);
	const unsigned int soft_max_fill = hard_max_fill - txq->free_thresh;
	unsigned int fill_level = added - txq->completed;
	boolean_t reap_done;
	int rc __rte_unused;
	struct rte_mbuf **pktp;

	if (unlikely((txq->state & SFC_TXQ_RUNNING) == 0))
		goto done;

	/*
	 * If insufficient space for a single packet is present,
	 * we should reap; otherwise, we shouldn't do that all the time
	 * to avoid latency increase
	 */
	reap_done = (fill_level > soft_max_fill);

	if (reap_done) {
		sfc_tx_reap(txq);
		/*
		 * Recalculate fill level since 'txq->completed'
		 * might have changed on reap
		 */
		fill_level = added - txq->completed;
	}

	for (pkts_sent = 0, pktp = &tx_pkts[0];
	     (pkts_sent < nb_pkts) && (fill_level <= soft_max_fill);
	     pkts_sent++, pktp++) {
		struct rte_mbuf		*m_seg = *pktp;
		size_t			pkt_len = m_seg->pkt_len;
		unsigned int		pkt_descs = 0;
		size_t			in_off = 0;

		/*
		 * Here VLAN TCI is expected to be zero in case if no
		 * DEV_TX_VLAN_OFFLOAD capability is advertised;
		 * if the calling app ignores the absence of
		 * DEV_TX_VLAN_OFFLOAD and pushes VLAN TCI, then
		 * TX_ERROR will occur
		 */
		pkt_descs += sfc_tx_maybe_insert_tag(txq, m_seg, &pend);

		if (m_seg->ol_flags & PKT_TX_TCP_SEG) {
			/*
			 * We expect correct 'pkt->l[2, 3, 4]_len' values
			 * to be set correctly by the caller
			 */
			if (sfc_tso_do(txq, added, &m_seg, &in_off, &pend,
				       &pkt_descs, &pkt_len) != 0) {
				/* We may have reached this place for
				 * one of the following reasons:
				 *
				 * 1) Packet header length is greater
				 *    than SFC_TSOH_STD_LEN
				 * 2) TCP header starts at more then
				 *    208 bytes into the frame
				 *
				 * We will deceive RTE saying that we have sent
				 * the packet, but we will actually drop it.
				 * Hence, we should revert 'pend' to the
				 * previous state (in case we have added
				 * VLAN descriptor) and start processing
				 * another one packet. But the original
				 * mbuf shouldn't be orphaned
				 */
				pend -= pkt_descs;

				rte_pktmbuf_free(*pktp);

				continue;
			}

			/*
			 * We've only added 2 FATSOv2 option descriptors
			 * and 1 descriptor for the linearized packet header.
			 * The outstanding work will be done in the same manner
			 * as for the usual non-TSO path
			 */
		}

		for (; m_seg != NULL; m_seg = m_seg->next) {
			efsys_dma_addr_t	next_frag;
			size_t			seg_len;

			seg_len = m_seg->data_len;
			next_frag = rte_mbuf_data_dma_addr(m_seg);

			/*
			 * If we've started TSO transaction few steps earlier,
			 * we'll skip packet header using an offset in the
			 * current segment (which has been set to the
			 * first one containing payload)
			 */
			seg_len -= in_off;
			next_frag += in_off;
			in_off = 0;

			do {
				efsys_dma_addr_t	frag_addr = next_frag;
				size_t			frag_len;

				next_frag = RTE_ALIGN(frag_addr + 1,
						      SFC_TX_SEG_BOUNDARY);
				frag_len = MIN(next_frag - frag_addr, seg_len);
				seg_len -= frag_len;
				pkt_len -= frag_len;

				efx_tx_qdesc_dma_create(txq->common,
							frag_addr, frag_len,
							(pkt_len == 0),
							pend++);

				pkt_descs++;
			} while (seg_len != 0);
		}

		added += pkt_descs;

		fill_level += pkt_descs;
		if (unlikely(fill_level > hard_max_fill)) {
			/*
			 * Our estimation for maximum number of descriptors
			 * required to send a packet seems to be wrong.
			 * Try to reap (if we haven't yet).
			 */
			if (!reap_done) {
				sfc_tx_reap(txq);
				reap_done = B_TRUE;
				fill_level = added - txq->completed;
				if (fill_level > hard_max_fill) {
					pend -= pkt_descs;
					break;
				}
			} else {
				pend -= pkt_descs;
				break;
			}
		}

		/* Assign mbuf to the last used desc */
		txq->sw_ring[(added - 1) & txq->ptr_mask].mbuf = *pktp;
	}

	if (likely(pkts_sent > 0)) {
		rc = efx_tx_qdesc_post(txq->common, txq->pend_desc,
				       pend - &txq->pend_desc[0],
				       txq->completed, &txq->added);
		SFC_ASSERT(rc == 0);

		if (likely(pushed != txq->added))
			efx_tx_qpush(txq->common, txq->added, pushed);
	}

#if SFC_TX_XMIT_PKTS_REAP_AT_LEAST_ONCE
	if (!reap_done)
		sfc_tx_reap(txq);
#endif

done:
	return pkts_sent;
}