DPDK logo

Elixir Cross Referencer

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2016-2020 Intel Corporation
 */

#ifndef _RTE_CRYPTO_SYM_H_
#define _RTE_CRYPTO_SYM_H_

/**
 * @file rte_crypto_sym.h
 *
 * RTE Definitions for Symmetric Cryptography
 *
 * Defines symmetric cipher and authentication algorithms and modes, as well
 * as supported symmetric crypto operation combinations.
 */

#ifdef __cplusplus
extern "C" {
#endif

#include <string.h>

#include <rte_mbuf.h>
#include <rte_memory.h>
#include <rte_mempool.h>
#include <rte_common.h>

/**
 * Crypto IO Vector (in analogy with struct iovec)
 * Supposed be used to pass input/output data buffers for crypto data-path
 * functions.
 */
struct rte_crypto_vec {
	/** virtual address of the data buffer */
	void *base;
	/** IOVA of the data buffer */
	rte_iova_t iova;
	/** length of the data buffer */
	uint32_t len;
};

/**
 * Crypto scatter-gather list descriptor. Consists of a pointer to an array
 * of Crypto IO vectors with its size.
 */
struct rte_crypto_sgl {
	/** start of an array of vectors */
	struct rte_crypto_vec *vec;
	/** size of an array of vectors */
	uint32_t num;
};

/**
 * Crypto virtual and IOVA address descriptor, used to describe cryptographic
 * data buffer without the length information. The length information is
 * normally predefined during session creation.
 */
struct rte_crypto_va_iova_ptr {
	void *va;
	rte_iova_t iova;
};

/**
 * Raw data operation descriptor.
 * Supposed to be used with synchronous CPU crypto API call or asynchronous
 * RAW data path API call.
 */
struct rte_crypto_sym_vec {
	/** number of operations to perform */
	uint32_t num;
	/** array of SGL vectors */
	struct rte_crypto_sgl *sgl;
	/** array of pointers to cipher IV */
	struct rte_crypto_va_iova_ptr *iv;
	/** array of pointers to digest */
	struct rte_crypto_va_iova_ptr *digest;

	__extension__
	union {
		/** array of pointers to auth IV, used for chain operation */
		struct rte_crypto_va_iova_ptr *auth_iv;
		/** array of pointers to AAD, used for AEAD operation */
		struct rte_crypto_va_iova_ptr *aad;
	};

	/**
	 * array of statuses for each operation:
	 * - 0 on success
	 * - errno on error
	 */
	int32_t *status;
};

/**
 * used for cpu_crypto_process_bulk() to specify head/tail offsets
 * for auth/cipher processing.
 */
union rte_crypto_sym_ofs {
	uint64_t raw;
	struct {
		struct {
			uint16_t head;
			uint16_t tail;
		} auth, cipher;
	} ofs;
};

/** Symmetric Cipher Algorithms
 *
 * Note, to avoid ABI breakage across releases
 * - LIST_END should not be added to this enum
 * - the order of enums should not be changed
 * - new algorithms should only be added to the end
 */
enum rte_crypto_cipher_algorithm {
	RTE_CRYPTO_CIPHER_NULL = 1,
	/**< NULL cipher algorithm. No mode applies to the NULL algorithm. */

	RTE_CRYPTO_CIPHER_3DES_CBC,
	/**< Triple DES algorithm in CBC mode */
	RTE_CRYPTO_CIPHER_3DES_CTR,
	/**< Triple DES algorithm in CTR mode */
	RTE_CRYPTO_CIPHER_3DES_ECB,
	/**< Triple DES algorithm in ECB mode */

	RTE_CRYPTO_CIPHER_AES_CBC,
	/**< AES algorithm in CBC mode */
	RTE_CRYPTO_CIPHER_AES_CTR,
	/**< AES algorithm in Counter mode */
	RTE_CRYPTO_CIPHER_AES_ECB,
	/**< AES algorithm in ECB mode */
	RTE_CRYPTO_CIPHER_AES_F8,
	/**< AES algorithm in F8 mode */
	RTE_CRYPTO_CIPHER_AES_XTS,
	/**< AES algorithm in XTS mode */

	RTE_CRYPTO_CIPHER_ARC4,
	/**< (A)RC4 cipher algorithm */

	RTE_CRYPTO_CIPHER_KASUMI_F8,
	/**< KASUMI algorithm in F8 mode */

	RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
	/**< SNOW 3G algorithm in UEA2 mode */

	RTE_CRYPTO_CIPHER_ZUC_EEA3,
	/**< ZUC algorithm in EEA3 mode */

	RTE_CRYPTO_CIPHER_DES_CBC,
	/**< DES algorithm in CBC mode */

	RTE_CRYPTO_CIPHER_AES_DOCSISBPI,
	/**< AES algorithm using modes required by
	 * DOCSIS Baseline Privacy Plus Spec.
	 * Chained mbufs are not supported in this mode, i.e. rte_mbuf.next
	 * for m_src and m_dst in the rte_crypto_sym_op must be NULL.
	 */

	RTE_CRYPTO_CIPHER_DES_DOCSISBPI
	/**< DES algorithm using modes required by
	 * DOCSIS Baseline Privacy Plus Spec.
	 * Chained mbufs are not supported in this mode, i.e. rte_mbuf.next
	 * for m_src and m_dst in the rte_crypto_sym_op must be NULL.
	 */
};

/** Cipher algorithm name strings */
extern const char *
rte_crypto_cipher_algorithm_strings[];

/** Symmetric Cipher Direction */
enum rte_crypto_cipher_operation {
	RTE_CRYPTO_CIPHER_OP_ENCRYPT,
	/**< Encrypt cipher operation */
	RTE_CRYPTO_CIPHER_OP_DECRYPT
	/**< Decrypt cipher operation */
};

/** Cipher operation name strings */
extern const char *
rte_crypto_cipher_operation_strings[];

/**
 * Symmetric Cipher Setup Data.
 *
 * This structure contains data relating to Cipher (Encryption and Decryption)
 *  use to create a session.
 */
struct rte_crypto_cipher_xform {
	enum rte_crypto_cipher_operation op;
	/**< This parameter determines if the cipher operation is an encrypt or
	 * a decrypt operation. For the RC4 algorithm and the F8/CTR modes,
	 * only encrypt operations are valid.
	 */
	enum rte_crypto_cipher_algorithm algo;
	/**< Cipher algorithm */

	RTE_STD_C11
	union { /* temporary anonymous union for ABI compatibility */

	struct {
		const uint8_t *data;	/**< pointer to key data */
		uint16_t length;	/**< key length in bytes */
	} key;
	/**< Cipher key
	 *
	 * In case the PMD supports RTE_CRYPTODEV_FF_CIPHER_WRAPPED_KEY, the
	 * original key data provided may be wrapped(encrypted) using key wrap
	 * algorithm such as AES key wrap (rfc3394) and hence length of the key
	 * may increase beyond the PMD advertised supported key size.
	 * PMD shall validate the key length and report EMSGSIZE error while
	 * configuring the session and application can skip checking the
	 * capability key length in such cases.
	 *
	 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.data will
	 * point to a concatenation of the AES encryption key followed by a
	 * keymask. As per RFC3711, the keymask should be padded with trailing
	 * bytes to match the length of the encryption key used.
	 *
	 * Cipher key length is in bytes. For AES it can be 128 bits (16 bytes),
	 * 192 bits (24 bytes) or 256 bits (32 bytes).
	 *
	 * For the RTE_CRYPTO_CIPHER_AES_F8 mode of operation, key.length
	 * should be set to the combined length of the encryption key and the
	 * keymask. Since the keymask and the encryption key are the same size,
	 * key.length should be set to 2 x the AES encryption key length.
	 *
	 * For the AES-XTS mode of operation:
	 *  - Two keys must be provided and key.length refers to total length of
	 *    the two keys.
	 *  - key.data must point to the two keys concatenated together
	 *    (key1 || key2).
	 *  - Each key can be either 128 bits (16 bytes) or 256 bits (32 bytes).
	 *  - Both keys must have the same size.
	 **/

	RTE_STD_C11
	struct { /* temporary anonymous struct for ABI compatibility */
		const uint8_t *_key_data; /* reserved for key.data union */
		uint16_t _key_length;     /* reserved for key.length union */
		/* next field can fill the padding hole */

	uint16_t dataunit_len;
	/**< When RTE_CRYPTODEV_FF_CIPHER_MULTIPLE_DATA_UNITS is enabled,
	 * this is the data-unit length of the algorithm,
	 * otherwise or when the value is 0, use the operation length.
	 * The value should be in the range defined by the dataunit_set field
	 * in the cipher capability.
	 *
	 * - For AES-XTS it is the size of data-unit, from IEEE Std 1619-2007.
	 * For-each data-unit in the operation, the tweak (IV) value is
	 * assigned consecutively starting from the operation assigned IV.
	 */

	}; }; /* temporary struct nested in union for ABI compatibility */

	struct {
		uint16_t offset;
		/**< Starting point for Initialisation Vector or Counter,
		 * specified as number of bytes from start of crypto
		 * operation (rte_crypto_op).
		 *
		 * - For block ciphers in CBC or F8 mode, or for KASUMI
		 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the
		 * Initialisation Vector (IV) value.
		 *
		 * - For block ciphers in CTR mode, this is the counter.
		 *
		 * - For CCM mode, the first byte is reserved, and the
		 * nonce should be written starting at &iv[1] (to allow
		 * space for the implementation to write in the flags
		 * in the first byte). Note that a full 16 bytes should
		 * be allocated, even though the length field will
		 * have a value less than this. Note that the PMDs may
		 * modify the memory reserved (the first byte and the
		 * final padding)
		 *
		 * - For AES-XTS, this is the 128bit tweak, i, from
		 * IEEE Std 1619-2007.
		 *
		 * For optimum performance, the data pointed to SHOULD
		 * be 8-byte aligned.
		 */
		uint16_t length;
		/**< Length of valid IV data.
		 *
		 * - For block ciphers in CBC or F8 mode, or for KASUMI
		 * in F8 mode, or for SNOW 3G in UEA2 mode, this is the
		 * length of the IV (which must be the same as the
		 * block length of the cipher).
		 *
		 * - For block ciphers in CTR mode, this is the length
		 * of the counter (which must be the same as the block
		 * length of the cipher).
		 *
		 * - For CCM mode, this is the length of the nonce,
		 * which can be in the range 7 to 13 inclusive.
		 */
	} iv;	/**< Initialisation vector parameters */
};

/** Symmetric Authentication / Hash Algorithms
 *
 * Note, to avoid ABI breakage across releases
 * - LIST_END should not be added to this enum
 * - the order of enums should not be changed
 * - new algorithms should only be added to the end
 */
enum rte_crypto_auth_algorithm {
	RTE_CRYPTO_AUTH_NULL = 1,
	/**< NULL hash algorithm. */

	RTE_CRYPTO_AUTH_AES_CBC_MAC,
	/**< AES-CBC-MAC algorithm. Only 128-bit keys are supported. */
	RTE_CRYPTO_AUTH_AES_CMAC,
	/**< AES CMAC algorithm. */
	RTE_CRYPTO_AUTH_AES_GMAC,
	/**< AES GMAC algorithm. */
	RTE_CRYPTO_AUTH_AES_XCBC_MAC,
	/**< AES XCBC algorithm. */

	RTE_CRYPTO_AUTH_KASUMI_F9,
	/**< KASUMI algorithm in F9 mode. */

	RTE_CRYPTO_AUTH_MD5,
	/**< MD5 algorithm */
	RTE_CRYPTO_AUTH_MD5_HMAC,
	/**< HMAC using MD5 algorithm */

	RTE_CRYPTO_AUTH_SHA1,
	/**< 160 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA1_HMAC,
	/**< HMAC using 160 bit SHA algorithm.
	 * HMAC-SHA-1-96 can be generated by setting
	 * digest_length to 12 bytes in auth/aead xforms.
	 */
	RTE_CRYPTO_AUTH_SHA224,
	/**< 224 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA224_HMAC,
	/**< HMAC using 224 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA256,
	/**< 256 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA256_HMAC,
	/**< HMAC using 256 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA384,
	/**< 384 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA384_HMAC,
	/**< HMAC using 384 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA512,
	/**< 512 bit SHA algorithm. */
	RTE_CRYPTO_AUTH_SHA512_HMAC,
	/**< HMAC using 512 bit SHA algorithm. */

	RTE_CRYPTO_AUTH_SNOW3G_UIA2,
	/**< SNOW 3G algorithm in UIA2 mode. */

	RTE_CRYPTO_AUTH_ZUC_EIA3,
	/**< ZUC algorithm in EIA3 mode */

	RTE_CRYPTO_AUTH_SHA3_224,
	/**< 224 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_224_HMAC,
	/**< HMAC using 224 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_256,
	/**< 256 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_256_HMAC,
	/**< HMAC using 256 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_384,
	/**< 384 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_384_HMAC,
	/**< HMAC using 384 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_512,
	/**< 512 bit SHA3 algorithm. */
	RTE_CRYPTO_AUTH_SHA3_512_HMAC
	/**< HMAC using 512 bit SHA3 algorithm. */
};

/** Authentication algorithm name strings */
extern const char *
rte_crypto_auth_algorithm_strings[];

/** Symmetric Authentication / Hash Operations */
enum rte_crypto_auth_operation {
	RTE_CRYPTO_AUTH_OP_VERIFY,	/**< Verify authentication digest */
	RTE_CRYPTO_AUTH_OP_GENERATE	/**< Generate authentication digest */
};

/** Authentication operation name strings */
extern const char *
rte_crypto_auth_operation_strings[];

/**
 * Authentication / Hash transform data.
 *
 * This structure contains data relating to an authentication/hash crypto
 * transforms. The fields op, algo and digest_length are common to all
 * authentication transforms and MUST be set.
 */
struct rte_crypto_auth_xform {
	enum rte_crypto_auth_operation op;
	/**< Authentication operation type */
	enum rte_crypto_auth_algorithm algo;
	/**< Authentication algorithm selection */

	struct {
		const uint8_t *data;	/**< pointer to key data */
		uint16_t length;	/**< key length in bytes */
	} key;
	/**< Authentication key data.
	 * The authentication key length MUST be less than or equal to the
	 * block size of the algorithm. It is the callers responsibility to
	 * ensure that the key length is compliant with the standard being used
	 * (for example RFC 2104, FIPS 198a).
	 */

	struct {
		uint16_t offset;
		/**< Starting point for Initialisation Vector or Counter,
		 * specified as number of bytes from start of crypto
		 * operation (rte_crypto_op).
		 *
		 * - For SNOW 3G in UIA2 mode, for ZUC in EIA3 mode
		 *   this is the authentication Initialisation Vector
		 *   (IV) value. For AES-GMAC IV description please refer
		 *   to the field `length` in iv struct.
		 *
		 * - For KASUMI in F9 mode and other authentication
		 *   algorithms, this field is not used.
		 *
		 * For optimum performance, the data pointed to SHOULD
		 * be 8-byte aligned.
		 */
		uint16_t length;
		/**< Length of valid IV data.
		 *
		 * - For SNOW3G in UIA2 mode, for ZUC in EIA3 mode and
		 *   for AES-GMAC, this is the length of the IV.
		 *
		 * - For KASUMI in F9 mode and other authentication
		 *   algorithms, this field is not used.
		 *
		 * - For GMAC mode, this is either:
		 * 1) Number greater or equal to one, which means that IV
		 *    is used and J0 will be computed internally, a minimum
		 *    of 16 bytes must be allocated.
		 * 2) Zero, in which case data points to J0. In this case
		 *    16 bytes of J0 should be passed where J0 is defined
		 *    by NIST SP800-38D.
		 *
		 */
	} iv;	/**< Initialisation vector parameters */

	uint16_t digest_length;
	/**< Length of the digest to be returned. If the verify option is set,
	 * this specifies the length of the digest to be compared for the
	 * session.
	 *
	 * It is the caller's responsibility to ensure that the
	 * digest length is compliant with the hash algorithm being used.
	 * If the value is less than the maximum length allowed by the hash,
	 * the result shall be truncated.
	 */
};


/** Symmetric AEAD Algorithms
 *
 * Note, to avoid ABI breakage across releases
 * - LIST_END should not be added to this enum
 * - the order of enums should not be changed
 * - new algorithms should only be added to the end
 */
enum rte_crypto_aead_algorithm {
	RTE_CRYPTO_AEAD_AES_CCM = 1,
	/**< AES algorithm in CCM mode. */
	RTE_CRYPTO_AEAD_AES_GCM,
	/**< AES algorithm in GCM mode. */
	RTE_CRYPTO_AEAD_CHACHA20_POLY1305
	/**< Chacha20 cipher with poly1305 authenticator */
};

/** AEAD algorithm name strings */
extern const char *
rte_crypto_aead_algorithm_strings[];

/** Symmetric AEAD Operations */
enum rte_crypto_aead_operation {
	RTE_CRYPTO_AEAD_OP_ENCRYPT,
	/**< Encrypt and generate digest */
	RTE_CRYPTO_AEAD_OP_DECRYPT
	/**< Verify digest and decrypt */
};

/** Authentication operation name strings */
extern const char *
rte_crypto_aead_operation_strings[];

struct rte_crypto_aead_xform {
	enum rte_crypto_aead_operation op;
	/**< AEAD operation type */
	enum rte_crypto_aead_algorithm algo;
	/**< AEAD algorithm selection */

	struct {
		const uint8_t *data;	/**< pointer to key data */
		uint16_t length;	/**< key length in bytes */
	} key;

	struct {
		uint16_t offset;
		/**< Starting point for Initialisation Vector or Counter,
		 * specified as number of bytes from start of crypto
		 * operation (rte_crypto_op).
		 *
		 * - For CCM mode, the first byte is reserved, and the
		 * nonce should be written starting at &iv[1] (to allow
		 * space for the implementation to write in the flags
		 * in the first byte). Note that a full 16 bytes should
		 * be allocated, even though the length field will
		 * have a value less than this.
		 *
		 * - For Chacha20-Poly1305 it is 96-bit nonce.
		 * PMD sets initial counter for Poly1305 key generation
		 * part to 0 and for Chacha20 encryption to 1 as per
		 * rfc8439 2.8. AEAD construction.
		 *
		 * For optimum performance, the data pointed to SHOULD
		 * be 8-byte aligned.
		 */
		uint16_t length;
		/**< Length of valid IV data.
		 *
		 * - For GCM mode, this is either:
		 * 1) Number greater or equal to one, which means that IV
		 *    is used and J0 will be computed internally, a minimum
		 *    of 16 bytes must be allocated.
		 * 2) Zero, in which case data points to J0. In this case
		 *    16 bytes of J0 should be passed where J0 is defined
		 *    by NIST SP800-38D.
		 *
		 * - For CCM mode, this is the length of the nonce,
		 * which can be in the range 7 to 13 inclusive.
		 *
		 * - For Chacha20-Poly1305 this field is always 12.
		 */
	} iv;	/**< Initialisation vector parameters */

	uint16_t digest_length;

	uint16_t aad_length;
	/**< The length of the additional authenticated data (AAD) in bytes.
	 * For CCM mode, this is the length of the actual AAD, even though
	 * it is required to reserve 18 bytes before the AAD and padding
	 * at the end of it, so a multiple of 16 bytes is allocated.
	 */
};

/** Crypto transformation types */
enum rte_crypto_sym_xform_type {
	RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED = 0,	/**< No xform specified */
	RTE_CRYPTO_SYM_XFORM_AUTH,		/**< Authentication xform */
	RTE_CRYPTO_SYM_XFORM_CIPHER,		/**< Cipher xform  */
	RTE_CRYPTO_SYM_XFORM_AEAD		/**< AEAD xform  */
};

/**
 * Symmetric crypto transform structure.
 *
 * This is used to specify the crypto transforms required, multiple transforms
 * can be chained together to specify a chain transforms such as authentication
 * then cipher, or cipher then authentication. Each transform structure can
 * hold a single transform, the type field is used to specify which transform
 * is contained within the union
 */
struct rte_crypto_sym_xform {
	struct rte_crypto_sym_xform *next;
	/**< next xform in chain */
	enum rte_crypto_sym_xform_type type
	; /**< xform type */
	RTE_STD_C11
	union {
		struct rte_crypto_auth_xform auth;
		/**< Authentication / hash xform */
		struct rte_crypto_cipher_xform cipher;
		/**< Cipher xform */
		struct rte_crypto_aead_xform aead;
		/**< AEAD xform */
	};
};

struct rte_cryptodev_sym_session;

/**
 * Symmetric Cryptographic Operation.
 *
 * This structure contains data relating to performing symmetric cryptographic
 * processing on a referenced mbuf data buffer.
 *
 * When a symmetric crypto operation is enqueued with the device for processing
 * it must have a valid *rte_mbuf* structure attached, via m_src parameter,
 * which contains the source data which the crypto operation is to be performed
 * on.
 * While the mbuf is in use by a crypto operation no part of the mbuf should be
 * changed by the application as the device may read or write to any part of the
 * mbuf. In the case of hardware crypto devices some or all of the mbuf
 * may be DMAed in and out of the device, so writing over the original data,
 * though only the part specified by the rte_crypto_sym_op for transformation
 * will be changed.
 * Out-of-place (OOP) operation, where the source mbuf is different to the
 * destination mbuf, is a special case. Data will be copied from m_src to m_dst.
 * The part copied includes all the parts of the source mbuf that will be
 * operated on, based on the cipher.data.offset+cipher.data.length and
 * auth.data.offset+auth.data.length values in the rte_crypto_sym_op. The part
 * indicated by the cipher parameters will be transformed, any extra data around
 * this indicated by the auth parameters will be copied unchanged from source to
 * destination mbuf.
 * Also in OOP operation the cipher.data.offset and auth.data.offset apply to
 * both source and destination mbufs. As these offsets are relative to the
 * data_off parameter in each mbuf this can result in the data written to the
 * destination buffer being at a different alignment, relative to buffer start,
 * to the data in the source buffer.
 */
struct rte_crypto_sym_op {
	struct rte_mbuf *m_src;	/**< source mbuf */
	struct rte_mbuf *m_dst;	/**< destination mbuf */

	RTE_STD_C11
	union {
		struct rte_cryptodev_sym_session *session;
		/**< Handle for the initialised session context */
		struct rte_crypto_sym_xform *xform;
		/**< Session-less API crypto operation parameters */
		struct rte_security_session *sec_session;
		/**< Handle for the initialised security session context */
	};

	RTE_STD_C11
	union {
		struct {
			struct {
				uint32_t offset;
				 /**< Starting point for AEAD processing, specified as
				  * number of bytes from start of packet in source
				  * buffer.
				  */
				uint32_t length;
				 /**< The message length, in bytes, of the source buffer
				  * on which the cryptographic operation will be
				  * computed. This must be a multiple of the block size
				  */
			} data; /**< Data offsets and length for AEAD */
			struct {
				uint8_t *data;
				/**< This points to the location where the digest result
				 * should be inserted (in the case of digest generation)
				 * or where the purported digest exists (in the case of
				 * digest verification).
				 *
				 * At session creation time, the client specified the
				 * digest result length with the digest_length member
				 * of the @ref rte_crypto_auth_xform structure. For
				 * physical crypto devices the caller must allocate at
				 * least digest_length of physically contiguous memory
				 * at this location.
				 *
				 * For digest generation, the digest result will
				 * overwrite any data at this location.
				 *
				 * @note
				 * For GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), for
				 * "digest result" read "authentication tag T".
				 */
				rte_iova_t phys_addr;
				/**< Physical address of digest */
			} digest; /**< Digest parameters */
			struct {
				uint8_t *data;
				/**< Pointer to Additional Authenticated Data (AAD)
				 * needed for authenticated cipher mechanisms (CCM and
				 * GCM)
				 *
				 * Specifically for CCM (@ref RTE_CRYPTO_AEAD_AES_CCM),
				 * the caller should setup this field as follows:
				 *
				 * - the additional authentication data itself should
				 * be written starting at an offset of 18 bytes into
				 * the array, leaving room for the first block (16 bytes)
				 * and the length encoding in the first two bytes of the
				 * second block.
				 *
				 * - the array should be big enough to hold the above
				 * fields, plus any padding to round this up to the
				 * nearest multiple of the block size (16 bytes).
				 * Padding will be added by the implementation.
				 *
				 * - Note that PMDs may modify the memory reserved
				 * (first 18 bytes and the final padding).
				 *
				 * Finally, for GCM (@ref RTE_CRYPTO_AEAD_AES_GCM), the
				 * caller should setup this field as follows:
				 *
				 * - the AAD is written in starting at byte 0
				 * - the array must be big enough to hold the AAD, plus
				 * any space to round this up to the nearest multiple
				 * of the block size (16 bytes).
				 *
				 */
				rte_iova_t phys_addr;	/**< physical address */
			} aad;
			/**< Additional authentication parameters */
		} aead;

		struct {
			struct {
				struct {
					uint32_t offset;
					 /**< Starting point for cipher processing,
					  * specified as number of bytes from start
					  * of data in the source buffer.
					  * The result of the cipher operation will be
					  * written back into the output buffer
					  * starting at this location.
					  *
					  * @note
					  * For SNOW 3G @ RTE_CRYPTO_CIPHER_SNOW3G_UEA2,
					  * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
					  * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
					  * this field should be in bits. For
					  * digest-encrypted cases this must be
					  * an 8-bit multiple.
					  */
					uint32_t length;
					 /**< The message length, in bytes, of the
					  * source buffer on which the cryptographic
					  * operation will be computed.
					  * This is also the same as the result length.
					  * This must be a multiple of the block size
					  * or a multiple of data-unit length
					  * as described in xform.
					  *
					  * @note
					  * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UEA2,
					  * KASUMI @ RTE_CRYPTO_CIPHER_KASUMI_F8
					  * and ZUC @ RTE_CRYPTO_CIPHER_ZUC_EEA3,
					  * this field should be in bits. For
					  * digest-encrypted cases this must be
					  * an 8-bit multiple.
					  */
				} data; /**< Data offsets and length for ciphering */
			} cipher;

			struct {
				struct {
					uint32_t offset;
					 /**< Starting point for hash processing,
					  * specified as number of bytes from start of
					  * packet in source buffer.
					  *
					  * @note
					  * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
					  * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
					  * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
					  * this field should be in bits. For
					  * digest-encrypted cases this must be
					  * an 8-bit multiple.
					  *
					  * @note
					  * For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9,
					  * this offset should be such that
					  * data to authenticate starts at COUNT.
					  *
					  * @note
					  * For DOCSIS security protocol, this
					  * offset is the DOCSIS header length
					  * and, therefore, also the CRC offset
					  * i.e. the number of bytes into the
					  * packet at which CRC calculation
					  * should begin.
					  */
					uint32_t length;
					 /**< The message length, in bytes, of the source
					  * buffer that the hash will be computed on.
					  *
					  * @note
					  * For SNOW 3G @ RTE_CRYPTO_AUTH_SNOW3G_UIA2,
					  * KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9
					  * and ZUC @ RTE_CRYPTO_AUTH_ZUC_EIA3,
					  * this field should be in bits. For
					  * digest-encrypted cases this must be
					  * an 8-bit multiple.
					  *
					  * @note
					  * For KASUMI @ RTE_CRYPTO_AUTH_KASUMI_F9,
					  * the length should include the COUNT,
					  * FRESH, message, direction bit and padding
					  * (to be multiple of 8 bits).
					  *
					  * @note
					  * For DOCSIS security protocol, this
					  * is the CRC length i.e. the number of
					  * bytes in the packet over which the
					  * CRC should be calculated
					  */
				} data;
				/**< Data offsets and length for authentication */

				struct {
					uint8_t *data;
					/**< This points to the location where
					 * the digest result should be inserted
					 * (in the case of digest generation)
					 * or where the purported digest exists
					 * (in the case of digest verification).
					 *
					 * At session creation time, the client
					 * specified the digest result length with
					 * the digest_length member of the
					 * @ref rte_crypto_auth_xform structure.
					 * For physical crypto devices the caller
					 * must allocate at least digest_length of
					 * physically contiguous memory at this
					 * location.
					 *
					 * For digest generation, the digest result
					 * will overwrite any data at this location.
					 *
					 * @note
					 * Digest-encrypted case.
					 * Digest can be generated, appended to
					 * the end of raw data and encrypted
					 * together using chained digest
					 * generation
					 * (@ref RTE_CRYPTO_AUTH_OP_GENERATE)
					 * and encryption
					 * (@ref RTE_CRYPTO_CIPHER_OP_ENCRYPT)
					 * xforms. Similarly, authentication
					 * of the raw data against appended,
					 * decrypted digest, can be performed
					 * using decryption
					 * (@ref RTE_CRYPTO_CIPHER_OP_DECRYPT)
					 * and digest verification
					 * (@ref RTE_CRYPTO_AUTH_OP_VERIFY)
					 * chained xforms.
					 * To perform those operations, a few
					 * additional conditions must be met:
					 * - caller must allocate at least
					 * digest_length of memory at the end of
					 * source and (in case of out-of-place
					 * operations) destination buffer; those
					 * buffers can be linear or split using
					 * scatter-gather lists,
					 * - digest data pointer must point to
					 * the end of source or (in case of
					 * out-of-place operations) destination
					 * data, which is pointer to the
					 * data buffer + auth.data.offset +
					 * auth.data.length,
					 * - cipher.data.offset +
					 * cipher.data.length must be greater
					 * than auth.data.offset +
					 * auth.data.length and is typically
					 * equal to auth.data.offset +
					 * auth.data.length + digest_length.
					 * - for wireless algorithms, i.e.
					 * SNOW 3G, KASUMI and ZUC, as the
					 * cipher.data.length,
					 * cipher.data.offset,
					 * auth.data.length and
					 * auth.data.offset are in bits, they
					 * must be 8-bit multiples.
					 *
					 * Note, that for security reasons, it
					 * is PMDs' responsibility to not
					 * leave an unencrypted digest in any
					 * buffer after performing auth-cipher
					 * operations.
					 *
					 */
					rte_iova_t phys_addr;
					/**< Physical address of digest */
				} digest; /**< Digest parameters */
			} auth;
		};
	};
};


/**
 * Reset the fields of a symmetric operation to their default values.
 *
 * @param	op	The crypto operation to be reset.
 */
static inline void
__rte_crypto_sym_op_reset(struct rte_crypto_sym_op *op)
{
	memset(op, 0, sizeof(*op));
}


/**
 * Allocate space for symmetric crypto xforms in the private data space of the
 * crypto operation. This also defaults the crypto xform type to
 * RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED and configures the chaining of the xforms
 * in the crypto operation
 *
 * @return
 * - On success returns pointer to first crypto xform in crypto operations chain
 * - On failure returns NULL
 */
static inline struct rte_crypto_sym_xform *
__rte_crypto_sym_op_sym_xforms_alloc(struct rte_crypto_sym_op *sym_op,
		void *priv_data, uint8_t nb_xforms)
{
	struct rte_crypto_sym_xform *xform;

	sym_op->xform = xform = (struct rte_crypto_sym_xform *)priv_data;

	do {
		xform->type = RTE_CRYPTO_SYM_XFORM_NOT_SPECIFIED;
		xform = xform->next = --nb_xforms > 0 ? xform + 1 : NULL;
	} while (xform);

	return sym_op->xform;
}


/**
 * Attach a session to a symmetric crypto operation
 *
 * @param	sym_op	crypto operation
 * @param	sess	cryptodev session
 */
static inline int
__rte_crypto_sym_op_attach_sym_session(struct rte_crypto_sym_op *sym_op,
		struct rte_cryptodev_sym_session *sess)
{
	sym_op->session = sess;

	return 0;
}

/**
 * Converts portion of mbuf data into a vector representation.
 * Each segment will be represented as a separate entry in *vec* array.
 * Expects that provided *ofs* + *len* not to exceed mbuf's *pkt_len*.
 * @param mb
 *   Pointer to the *rte_mbuf* object.
 * @param ofs
 *   Offset within mbuf data to start with.
 * @param len
 *   Length of data to represent.
 * @param vec
 *   Pointer to an output array of IO vectors.
 * @param num
 *   Size of an output array.
 * @return
 *   - number of successfully filled entries in *vec* array.
 *   - negative number of elements in *vec* array required.
 */
__rte_experimental
static inline int
rte_crypto_mbuf_to_vec(const struct rte_mbuf *mb, uint32_t ofs, uint32_t len,
	struct rte_crypto_vec vec[], uint32_t num)
{
	uint32_t i;
	struct rte_mbuf *nseg;
	uint32_t left;
	uint32_t seglen;

	/* assuming that requested data starts in the first segment */
	RTE_ASSERT(mb->data_len > ofs);

	if (mb->nb_segs > num)
		return -mb->nb_segs;

	vec[0].base = rte_pktmbuf_mtod_offset(mb, void *, ofs);
	vec[0].iova = rte_pktmbuf_iova_offset(mb, ofs);

	/* whole data lies in the first segment */
	seglen = mb->data_len - ofs;
	if (len <= seglen) {
		vec[0].len = len;
		return 1;
	}

	/* data spread across segments */
	vec[0].len = seglen;
	left = len - seglen;
	for (i = 1, nseg = mb->next; nseg != NULL; nseg = nseg->next, i++) {

		vec[i].base = rte_pktmbuf_mtod(nseg, void *);
		vec[i].iova = rte_pktmbuf_iova(nseg);

		seglen = nseg->data_len;
		if (left <= seglen) {
			/* whole requested data is completed */
			vec[i].len = left;
			left = 0;
			break;
		}

		/* use whole segment */
		vec[i].len = seglen;
		left -= seglen;
	}

	RTE_ASSERT(left == 0);
	return i + 1;
}


#ifdef __cplusplus
}
#endif

#endif /* _RTE_CRYPTO_SYM_H_ */