DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright 2017 6WIND S.A.
 * Copyright 2017 Mellanox Technologies, Ltd
 */

#include <stdint.h>
#include <string.h>
#include <stdlib.h>

#include <rte_mbuf.h>
#include <rte_mempool.h>
#include <rte_prefetch.h>
#include <rte_vect.h>

#include <mlx5_glue.h>
#include <mlx5_prm.h>

#include "mlx5_defs.h"
#include "mlx5.h"
#include "mlx5_utils.h"
#include "mlx5_rxtx.h"
#include "mlx5_rx.h"
#include "mlx5_rxtx_vec.h"
#include "mlx5_autoconf.h"

#if defined RTE_ARCH_X86_64
#include "mlx5_rxtx_vec_sse.h"
#elif defined RTE_ARCH_ARM64
#include "mlx5_rxtx_vec_neon.h"
#elif defined RTE_ARCH_PPC_64
#include "mlx5_rxtx_vec_altivec.h"
#else
#error "This should not be compiled if SIMD instructions are not supported."
#endif

/**
 * Skip error packets.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 *
 * @return
 *   Number of packets successfully received (<= pkts_n).
 */
static uint16_t
rxq_handle_pending_error(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts,
			 uint16_t pkts_n)
{
	uint16_t n = 0;
	unsigned int i;
#ifdef MLX5_PMD_SOFT_COUNTERS
	uint32_t err_bytes = 0;
#endif

	for (i = 0; i < pkts_n; ++i) {
		struct rte_mbuf *pkt = pkts[i];

		if (pkt->packet_type == RTE_PTYPE_ALL_MASK || rxq->err_state) {
#ifdef MLX5_PMD_SOFT_COUNTERS
			err_bytes += PKT_LEN(pkt);
#endif
			rte_pktmbuf_free_seg(pkt);
		} else {
			pkts[n++] = pkt;
		}
	}
	rxq->stats.idropped += (pkts_n - n);
#ifdef MLX5_PMD_SOFT_COUNTERS
	/* Correct counters of errored completions. */
	rxq->stats.ipackets -= (pkts_n - n);
	rxq->stats.ibytes -= err_bytes;
#endif
	mlx5_rx_err_handle(rxq, 1);
	return n;
}

/**
 * Replenish buffers for RX in bulk.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 */
static inline void
mlx5_rx_replenish_bulk_mbuf(struct mlx5_rxq_data *rxq)
{
	const uint16_t q_n = 1 << rxq->elts_n;
	const uint16_t q_mask = q_n - 1;
	uint16_t n = q_n - (rxq->rq_ci - rxq->rq_pi);
	uint16_t elts_idx = rxq->rq_ci & q_mask;
	struct rte_mbuf **elts = &(*rxq->elts)[elts_idx];
	volatile struct mlx5_wqe_data_seg *wq =
		&((volatile struct mlx5_wqe_data_seg *)rxq->wqes)[elts_idx];
	unsigned int i;

	if (n >= rxq->rq_repl_thresh) {
		MLX5_ASSERT(n >= MLX5_VPMD_RXQ_RPLNSH_THRESH(q_n));
		MLX5_ASSERT(MLX5_VPMD_RXQ_RPLNSH_THRESH(q_n) >
			    MLX5_VPMD_DESCS_PER_LOOP);
		/* Not to cross queue end. */
		n = RTE_MIN(n - MLX5_VPMD_DESCS_PER_LOOP, q_n - elts_idx);
		if (rte_mempool_get_bulk(rxq->mp, (void *)elts, n) < 0) {
			rxq->stats.rx_nombuf += n;
			return;
		}
		if (unlikely(mlx5_mr_btree_len(&rxq->mr_ctrl.cache_bh) > 1)) {
			for (i = 0; i < n; ++i) {
				/*
				 * In order to support the mbufs with external attached
				 * data buffer we should use the buf_addr pointer
				 * instead of rte_mbuf_buf_addr(). It touches the mbuf
				 * itself and may impact the performance.
				 */
				void *buf_addr = elts[i]->buf_addr;

				wq[i].addr = rte_cpu_to_be_64((uintptr_t)buf_addr +
							      RTE_PKTMBUF_HEADROOM);
				wq[i].lkey = mlx5_rx_mb2mr(rxq, elts[i]);
			}
		} else {
			for (i = 0; i < n; ++i) {
				void *buf_addr = elts[i]->buf_addr;

				wq[i].addr = rte_cpu_to_be_64((uintptr_t)buf_addr +
							      RTE_PKTMBUF_HEADROOM);
			}
		}
		rxq->rq_ci += n;
		/* Prevent overflowing into consumed mbufs. */
		elts_idx = rxq->rq_ci & q_mask;
		for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
			(*rxq->elts)[elts_idx + i] = &rxq->fake_mbuf;
		rte_io_wmb();
		*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
	}
}

/**
 * Replenish buffers for MPRQ RX in bulk.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 */
static inline void
mlx5_rx_mprq_replenish_bulk_mbuf(struct mlx5_rxq_data *rxq)
{
	const uint16_t wqe_n = 1 << rxq->elts_n;
	const uint32_t strd_n = 1 << rxq->strd_num_n;
	const uint32_t elts_n = wqe_n * strd_n;
	const uint32_t wqe_mask = elts_n - 1;
	uint32_t n = elts_n - (rxq->elts_ci - rxq->rq_pi);
	uint32_t elts_idx = rxq->elts_ci & wqe_mask;
	struct rte_mbuf **elts = &(*rxq->elts)[elts_idx];
	unsigned int i;

	if (n >= rxq->rq_repl_thresh &&
	    rxq->elts_ci - rxq->rq_pi <=
	    rxq->rq_repl_thresh + MLX5_VPMD_RX_MAX_BURST) {
		MLX5_ASSERT(n >= MLX5_VPMD_RXQ_RPLNSH_THRESH(elts_n));
		MLX5_ASSERT(MLX5_VPMD_RXQ_RPLNSH_THRESH(elts_n) >
			     MLX5_VPMD_DESCS_PER_LOOP);
		/* Not to cross queue end. */
		n = RTE_MIN(n - MLX5_VPMD_DESCS_PER_LOOP, elts_n - elts_idx);
		/* Limit replenish number to threshold value. */
		n = RTE_MIN(n, rxq->rq_repl_thresh);
		if (rte_mempool_get_bulk(rxq->mp, (void *)elts, n) < 0) {
			rxq->stats.rx_nombuf += n;
			return;
		}
		rxq->elts_ci += n;
		/* Prevent overflowing into consumed mbufs. */
		elts_idx = rxq->elts_ci & wqe_mask;
		for (i = 0; i < MLX5_VPMD_DESCS_PER_LOOP; ++i)
			(*rxq->elts)[elts_idx + i] = &rxq->fake_mbuf;
	}
}

/**
 * Copy or attach MPRQ buffers to RX SW ring.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 * @param pkts
 *   Pointer to array of packets to be stored.
 * @param pkts_n
 *   Number of packets to be stored.
 *
 * @return
 *   Number of packets successfully copied/attached (<= pkts_n).
 */
static inline uint16_t
rxq_copy_mprq_mbuf_v(struct mlx5_rxq_data *rxq,
		     struct rte_mbuf **pkts, uint16_t pkts_n)
{
	const uint16_t wqe_n = 1 << rxq->elts_n;
	const uint16_t wqe_mask = wqe_n - 1;
	const uint16_t strd_sz = 1 << rxq->strd_sz_n;
	const uint32_t strd_n = 1 << rxq->strd_num_n;
	const uint32_t elts_n = wqe_n * strd_n;
	const uint32_t elts_mask = elts_n - 1;
	uint32_t elts_idx = rxq->rq_pi & elts_mask;
	struct rte_mbuf **elts = &(*rxq->elts)[elts_idx];
	uint32_t rq_ci = rxq->rq_ci;
	struct mlx5_mprq_buf *buf = (*rxq->mprq_bufs)[rq_ci & wqe_mask];
	uint16_t copied = 0;
	uint16_t i = 0;

	for (i = 0; i < pkts_n; ++i) {
		uint16_t strd_cnt;
		enum mlx5_rqx_code rxq_code;

		if (rxq->consumed_strd == strd_n) {
			/* Replace WQE if the buffer is still in use. */
			mprq_buf_replace(rxq, rq_ci & wqe_mask);
			/* Advance to the next WQE. */
			rxq->consumed_strd = 0;
			rq_ci++;
			buf = (*rxq->mprq_bufs)[rq_ci & wqe_mask];
		}

		if (!elts[i]->pkt_len) {
			rxq->consumed_strd = strd_n;
			rte_pktmbuf_free_seg(elts[i]);
#ifdef MLX5_PMD_SOFT_COUNTERS
			rxq->stats.ipackets -= 1;
#endif
			continue;
		}
		strd_cnt = (elts[i]->pkt_len / strd_sz) +
			   ((elts[i]->pkt_len % strd_sz) ? 1 : 0);
		rxq_code = mprq_buf_to_pkt(rxq, elts[i], elts[i]->pkt_len,
					   buf, rxq->consumed_strd, strd_cnt);
		rxq->consumed_strd += strd_cnt;
		if (unlikely(rxq_code != MLX5_RXQ_CODE_EXIT)) {
			rte_pktmbuf_free_seg(elts[i]);
#ifdef MLX5_PMD_SOFT_COUNTERS
			rxq->stats.ipackets -= 1;
			rxq->stats.ibytes -= elts[i]->pkt_len;
#endif
			if (rxq_code == MLX5_RXQ_CODE_NOMBUF) {
				++rxq->stats.rx_nombuf;
				break;
			}
			if (rxq_code == MLX5_RXQ_CODE_DROPPED) {
				++rxq->stats.idropped;
				continue;
			}
		}
		pkts[copied++] = elts[i];
	}
	rxq->rq_pi += i;
	rxq->cq_ci += i;
	rte_io_wmb();
	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
	if (rq_ci != rxq->rq_ci) {
		rxq->rq_ci = rq_ci;
		rte_io_wmb();
		*rxq->rq_db = rte_cpu_to_be_32(rxq->rq_ci);
	}
	return copied;
}

/**
 * Receive burst of packets. An errored completion also consumes a mbuf, but the
 * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
 * before returning to application.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 * @param[out] err
 *   Pointer to a flag. Set non-zero value if pkts array has at least one error
 *   packet to handle.
 * @param[out] no_cq
 *   Pointer to a boolean. Set true if no new CQE seen.
 *
 * @return
 *   Number of packets received including errors (<= pkts_n).
 */
static inline uint16_t
rxq_burst_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts,
	    uint16_t pkts_n, uint64_t *err, bool *no_cq)
{
	const uint16_t q_n = 1 << rxq->cqe_n;
	const uint16_t q_mask = q_n - 1;
	const uint16_t e_n = 1 << rxq->elts_n;
	const uint16_t e_mask = e_n - 1;
	volatile struct mlx5_cqe *cq;
	struct rte_mbuf **elts;
	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
	uint16_t nocmp_n = 0;
	uint16_t rcvd_pkt = 0;
	unsigned int cq_idx = rxq->cq_ci & q_mask;
	unsigned int elts_idx;

	MLX5_ASSERT(rxq->sges_n == 0);
	MLX5_ASSERT(rxq->cqe_n == rxq->elts_n);
	cq = &(*rxq->cqes)[cq_idx];
	rte_prefetch0(cq);
	rte_prefetch0(cq + 1);
	rte_prefetch0(cq + 2);
	rte_prefetch0(cq + 3);
	pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
	mlx5_rx_replenish_bulk_mbuf(rxq);
	/* See if there're unreturned mbufs from compressed CQE. */
	rcvd_pkt = rxq->decompressed;
	if (rcvd_pkt > 0) {
		rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
		rxq_copy_mbuf_v(&(*rxq->elts)[rxq->rq_pi & e_mask],
				pkts, rcvd_pkt);
		rxq->rq_pi += rcvd_pkt;
		rxq->decompressed -= rcvd_pkt;
		pkts += rcvd_pkt;
	}
	elts_idx = rxq->rq_pi & e_mask;
	elts = &(*rxq->elts)[elts_idx];
	/* Not to overflow pkts array. */
	pkts_n = RTE_ALIGN_FLOOR(pkts_n - rcvd_pkt, MLX5_VPMD_DESCS_PER_LOOP);
	/* Not to cross queue end. */
	pkts_n = RTE_MIN(pkts_n, q_n - elts_idx);
	pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
	if (!pkts_n) {
		*no_cq = !rcvd_pkt;
		return rcvd_pkt;
	}
	/* At this point, there shouldn't be any remaining packets. */
	MLX5_ASSERT(rxq->decompressed == 0);
	/* Process all the CQEs */
	nocmp_n = rxq_cq_process_v(rxq, cq, elts, pkts, pkts_n, err, &comp_idx);
	/* If no new CQE seen, return without updating cq_db. */
	if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) {
		*no_cq = true;
		return rcvd_pkt;
	}
	/* Update the consumer indexes for non-compressed CQEs. */
	MLX5_ASSERT(nocmp_n <= pkts_n);
	rxq->cq_ci += nocmp_n;
	rxq->rq_pi += nocmp_n;
	rcvd_pkt += nocmp_n;
	/* Decompress the last CQE if compressed. */
	if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP) {
		MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
		rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
							&elts[nocmp_n]);
		rxq->cq_ci += rxq->decompressed;
		/* Return more packets if needed. */
		if (nocmp_n < pkts_n) {
			uint16_t n = rxq->decompressed;

			n = RTE_MIN(n, pkts_n - nocmp_n);
			rxq_copy_mbuf_v(&(*rxq->elts)[rxq->rq_pi & e_mask],
					&pkts[nocmp_n], n);
			rxq->rq_pi += n;
			rcvd_pkt += n;
			rxq->decompressed -= n;
		}
	}
	rte_io_wmb();
	*rxq->cq_db = rte_cpu_to_be_32(rxq->cq_ci);
	*no_cq = !rcvd_pkt;
	return rcvd_pkt;
}

/**
 * DPDK callback for vectorized RX.
 *
 * @param dpdk_rxq
 *   Generic pointer to RX queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 *
 * @return
 *   Number of packets successfully received (<= pkts_n).
 */
uint16_t
mlx5_rx_burst_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	struct mlx5_rxq_data *rxq = dpdk_rxq;
	uint16_t nb_rx = 0;
	uint16_t tn = 0;
	uint64_t err = 0;
	bool no_cq = false;

	do {
		nb_rx = rxq_burst_v(rxq, pkts + tn, pkts_n - tn,
				    &err, &no_cq);
		if (unlikely(err | rxq->err_state))
			nb_rx = rxq_handle_pending_error(rxq, pkts + tn, nb_rx);
		tn += nb_rx;
		if (unlikely(no_cq))
			break;
	} while (tn != pkts_n);
	return tn;
}

/**
 * Receive burst of packets. An errored completion also consumes a mbuf, but the
 * packet_type is set to be RTE_PTYPE_ALL_MASK. Marked mbufs should be freed
 * before returning to application.
 *
 * @param rxq
 *   Pointer to RX queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 * @param[out] err
 *   Pointer to a flag. Set non-zero value if pkts array has at least one error
 *   packet to handle.
 * @param[out] no_cq
 *   Pointer to a boolean. Set true if no new CQE seen.
 *
 * @return
 *   Number of packets received including errors (<= pkts_n).
 */
static inline uint16_t
rxq_burst_mprq_v(struct mlx5_rxq_data *rxq, struct rte_mbuf **pkts,
		 uint16_t pkts_n, uint64_t *err, bool *no_cq)
{
	const uint16_t q_n = 1 << rxq->cqe_n;
	const uint16_t q_mask = q_n - 1;
	const uint16_t wqe_n = 1 << rxq->elts_n;
	const uint32_t strd_n = 1 << rxq->strd_num_n;
	const uint32_t elts_n = wqe_n * strd_n;
	const uint32_t elts_mask = elts_n - 1;
	volatile struct mlx5_cqe *cq;
	struct rte_mbuf **elts;
	uint64_t comp_idx = MLX5_VPMD_DESCS_PER_LOOP;
	uint16_t nocmp_n = 0;
	uint16_t rcvd_pkt = 0;
	uint16_t cp_pkt = 0;
	unsigned int cq_idx = rxq->cq_ci & q_mask;
	unsigned int elts_idx;

	MLX5_ASSERT(rxq->sges_n == 0);
	cq = &(*rxq->cqes)[cq_idx];
	rte_prefetch0(cq);
	rte_prefetch0(cq + 1);
	rte_prefetch0(cq + 2);
	rte_prefetch0(cq + 3);
	pkts_n = RTE_MIN(pkts_n, MLX5_VPMD_RX_MAX_BURST);
	mlx5_rx_mprq_replenish_bulk_mbuf(rxq);
	/* Not to move past the allocated mbufs. */
	pkts_n = RTE_MIN(pkts_n, rxq->elts_ci - rxq->rq_pi);
	/* See if there're unreturned mbufs from compressed CQE. */
	rcvd_pkt = rxq->decompressed;
	if (rcvd_pkt > 0) {
		rcvd_pkt = RTE_MIN(rcvd_pkt, pkts_n);
		cp_pkt = rxq_copy_mprq_mbuf_v(rxq, pkts, rcvd_pkt);
		rxq->decompressed -= rcvd_pkt;
		pkts += cp_pkt;
	}
	elts_idx = rxq->rq_pi & elts_mask;
	elts = &(*rxq->elts)[elts_idx];
	/* Not to overflow pkts array. */
	pkts_n = RTE_ALIGN_FLOOR(pkts_n - cp_pkt, MLX5_VPMD_DESCS_PER_LOOP);
	/* Not to cross queue end. */
	pkts_n = RTE_MIN(pkts_n, elts_n - elts_idx);
	pkts_n = RTE_MIN(pkts_n, q_n - cq_idx);
	if (!pkts_n) {
		*no_cq = !cp_pkt;
		return cp_pkt;
	}
	/* At this point, there shouldn't be any remaining packets. */
	MLX5_ASSERT(rxq->decompressed == 0);
	/* Process all the CQEs */
	nocmp_n = rxq_cq_process_v(rxq, cq, elts, pkts, pkts_n, err, &comp_idx);
	/* If no new CQE seen, return without updating cq_db. */
	if (unlikely(!nocmp_n && comp_idx == MLX5_VPMD_DESCS_PER_LOOP)) {
		*no_cq = true;
		return cp_pkt;
	}
	/* Update the consumer indexes for non-compressed CQEs. */
	MLX5_ASSERT(nocmp_n <= pkts_n);
	cp_pkt = rxq_copy_mprq_mbuf_v(rxq, pkts, nocmp_n);
	rcvd_pkt += cp_pkt;
	/* Decompress the last CQE if compressed. */
	if (comp_idx < MLX5_VPMD_DESCS_PER_LOOP) {
		MLX5_ASSERT(comp_idx == (nocmp_n % MLX5_VPMD_DESCS_PER_LOOP));
		rxq->decompressed = rxq_cq_decompress_v(rxq, &cq[nocmp_n],
							&elts[nocmp_n]);
		/* Return more packets if needed. */
		if (nocmp_n < pkts_n) {
			uint16_t n = rxq->decompressed;

			n = RTE_MIN(n, pkts_n - nocmp_n);
			cp_pkt = rxq_copy_mprq_mbuf_v(rxq, &pkts[cp_pkt], n);
			rcvd_pkt += cp_pkt;
			rxq->decompressed -= n;
		}
	}
	*no_cq = !rcvd_pkt;
	return rcvd_pkt;
}

/**
 * DPDK callback for vectorized MPRQ RX.
 *
 * @param dpdk_rxq
 *   Generic pointer to RX queue structure.
 * @param[out] pkts
 *   Array to store received packets.
 * @param pkts_n
 *   Maximum number of packets in array.
 *
 * @return
 *   Number of packets successfully received (<= pkts_n).
 */
uint16_t
mlx5_rx_burst_mprq_vec(void *dpdk_rxq, struct rte_mbuf **pkts, uint16_t pkts_n)
{
	struct mlx5_rxq_data *rxq = dpdk_rxq;
	uint16_t nb_rx = 0;
	uint16_t tn = 0;
	uint64_t err = 0;
	bool no_cq = false;

	do {
		nb_rx = rxq_burst_mprq_v(rxq, pkts + tn, pkts_n - tn,
					 &err, &no_cq);
		if (unlikely(err | rxq->err_state))
			nb_rx = rxq_handle_pending_error(rxq, pkts + tn, nb_rx);
		tn += nb_rx;
		if (unlikely(no_cq))
			break;
	} while (tn != pkts_n);
	return tn;
}

/**
 * Check a RX queue can support vectorized RX.
 *
 * @param rxq
 *   Pointer to RX queue.
 *
 * @return
 *   1 if supported, negative errno value if not.
 */
int __rte_cold
mlx5_rxq_check_vec_support(struct mlx5_rxq_data *rxq)
{
	struct mlx5_rxq_ctrl *ctrl =
		container_of(rxq, struct mlx5_rxq_ctrl, rxq);

	if (!RXQ_PORT(ctrl)->config.rx_vec_en || rxq->sges_n != 0)
		return -ENOTSUP;
	if (rxq->lro)
		return -ENOTSUP;
	return 1;
}

/**
 * Check a device can support vectorized RX.
 *
 * @param dev
 *   Pointer to Ethernet device.
 *
 * @return
 *   1 if supported, negative errno value if not.
 */
int __rte_cold
mlx5_check_vec_rx_support(struct rte_eth_dev *dev)
{
	struct mlx5_priv *priv = dev->data->dev_private;
	uint32_t i;

	if (rte_vect_get_max_simd_bitwidth() < RTE_VECT_SIMD_128)
		return -ENOTSUP;
	if (!priv->config.rx_vec_en)
		return -ENOTSUP;
	/* All the configured queues should support. */
	for (i = 0; i < priv->rxqs_n; ++i) {
		struct mlx5_rxq_data *rxq_data = mlx5_rxq_data_get(dev, i);

		if (!rxq_data)
			continue;
		if (mlx5_rxq_check_vec_support(rxq_data) < 0)
			break;
	}
	if (i != priv->rxqs_n)
		return -ENOTSUP;
	return 1;
}