DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2019 Intel Corporation
 */

#include "ice_rxtx_vec_common.h"

#include <tmmintrin.h>

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif

static inline __m128i
ice_flex_rxd_to_fdir_flags_vec(const __m128i fdir_id0_3)
{
#define FDID_MIS_MAGIC 0xFFFFFFFF
	RTE_BUILD_BUG_ON(PKT_RX_FDIR != (1 << 2));
	RTE_BUILD_BUG_ON(PKT_RX_FDIR_ID != (1 << 13));
	const __m128i pkt_fdir_bit = _mm_set1_epi32(PKT_RX_FDIR |
			PKT_RX_FDIR_ID);
	/* desc->flow_id field == 0xFFFFFFFF means fdir mismatch */
	const __m128i fdir_mis_mask = _mm_set1_epi32(FDID_MIS_MAGIC);
	__m128i fdir_mask = _mm_cmpeq_epi32(fdir_id0_3,
			fdir_mis_mask);
	/* this XOR op results to bit-reverse the fdir_mask */
	fdir_mask = _mm_xor_si128(fdir_mask, fdir_mis_mask);
	const __m128i fdir_flags = _mm_and_si128(fdir_mask, pkt_fdir_bit);

	return fdir_flags;
}

static inline void
ice_rxq_rearm(struct ice_rx_queue *rxq)
{
	int i;
	uint16_t rx_id;
	volatile union ice_rx_flex_desc *rxdp;
	struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];
	struct rte_mbuf *mb0, *mb1;
	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
					  RTE_PKTMBUF_HEADROOM);
	__m128i dma_addr0, dma_addr1;

	rxdp = rxq->rx_ring + rxq->rxrearm_start;

	/* Pull 'n' more MBUFs into the software ring */
	if (rte_mempool_get_bulk(rxq->mp,
				 (void *)rxep,
				 ICE_RXQ_REARM_THRESH) < 0) {
		if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
		    rxq->nb_rx_desc) {
			dma_addr0 = _mm_setzero_si128();
			for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
				rxep[i].mbuf = &rxq->fake_mbuf;
				_mm_store_si128((__m128i *)&rxdp[i].read,
						dma_addr0);
			}
		}
		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
			ICE_RXQ_REARM_THRESH;
		return;
	}

	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
	for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
		__m128i vaddr0, vaddr1;

		mb0 = rxep[0].mbuf;
		mb1 = rxep[1].mbuf;

		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
				 offsetof(struct rte_mbuf, buf_addr) + 8);
		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);

		/* convert pa to dma_addr hdr/data */
		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);

		/* add headroom to pa values */
		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);

		/* flush desc with pa dma_addr */
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
	}

	rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
		rxq->rxrearm_start = 0;

	rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;

	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
			   (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));

	/* Update the tail pointer on the NIC */
	ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
}

static inline void
ice_rx_desc_to_olflags_v(struct ice_rx_queue *rxq, __m128i descs[4],
			 struct rte_mbuf **rx_pkts)
{
	const __m128i mbuf_init = _mm_set_epi64x(0, rxq->mbuf_initializer);
	__m128i rearm0, rearm1, rearm2, rearm3;

	__m128i tmp_desc, flags, rss_vlan;

	/* mask everything except checksum, RSS and VLAN flags.
	 * bit6:4 for checksum.
	 * bit12 for RSS indication.
	 * bit13 for VLAN indication.
	 */
	const __m128i desc_mask = _mm_set_epi32(0x30f0, 0x30f0,
						0x30f0, 0x30f0);
	const __m128i cksum_mask = _mm_set_epi32(PKT_RX_IP_CKSUM_MASK |
						 PKT_RX_L4_CKSUM_MASK |
						 PKT_RX_OUTER_L4_CKSUM_MASK |
						 PKT_RX_OUTER_IP_CKSUM_BAD,
						 PKT_RX_IP_CKSUM_MASK |
						 PKT_RX_L4_CKSUM_MASK |
						 PKT_RX_OUTER_L4_CKSUM_MASK |
						 PKT_RX_OUTER_IP_CKSUM_BAD,
						 PKT_RX_IP_CKSUM_MASK |
						 PKT_RX_L4_CKSUM_MASK |
						 PKT_RX_OUTER_L4_CKSUM_MASK |
						 PKT_RX_OUTER_IP_CKSUM_BAD,
						 PKT_RX_IP_CKSUM_MASK |
						 PKT_RX_L4_CKSUM_MASK |
						 PKT_RX_OUTER_L4_CKSUM_MASK |
						 PKT_RX_OUTER_IP_CKSUM_BAD);

	/* map the checksum, rss and vlan fields to the checksum, rss
	 * and vlan flag
	 */
	const __m128i cksum_flags =
		_mm_set_epi8((PKT_RX_OUTER_L4_CKSUM_BAD >> 20 |
		 PKT_RX_OUTER_IP_CKSUM_BAD | PKT_RX_L4_CKSUM_BAD |
		  PKT_RX_IP_CKSUM_BAD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
		 PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
		 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
		 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
		 PKT_RX_IP_CKSUM_BAD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_BAD |
		 PKT_RX_IP_CKSUM_GOOD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
		 PKT_RX_IP_CKSUM_BAD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_BAD >> 20 | PKT_RX_L4_CKSUM_GOOD |
		 PKT_RX_IP_CKSUM_GOOD) >> 1,
		/**
		 * shift right 20 bits to use the low two bits to indicate
		 * outer checksum status
		 * shift right 1 bit to make sure it not exceed 255
		 */
		(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
		 PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_BAD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
		 PKT_RX_L4_CKSUM_BAD | PKT_RX_IP_CKSUM_GOOD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
		 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_BAD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_OUTER_IP_CKSUM_BAD |
		 PKT_RX_L4_CKSUM_GOOD | PKT_RX_IP_CKSUM_GOOD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
		 PKT_RX_IP_CKSUM_BAD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_BAD |
		 PKT_RX_IP_CKSUM_GOOD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
		 PKT_RX_IP_CKSUM_BAD) >> 1,
		(PKT_RX_OUTER_L4_CKSUM_GOOD >> 20 | PKT_RX_L4_CKSUM_GOOD |
		 PKT_RX_IP_CKSUM_GOOD) >> 1);

	const __m128i rss_vlan_flags = _mm_set_epi8(0, 0, 0, 0,
			0, 0, 0, 0,
			0, 0, 0, 0,
			PKT_RX_RSS_HASH | PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
			PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED,
			PKT_RX_RSS_HASH, 0);

	/* merge 4 descriptors */
	flags = _mm_unpackhi_epi32(descs[0], descs[1]);
	tmp_desc = _mm_unpackhi_epi32(descs[2], descs[3]);
	tmp_desc = _mm_unpacklo_epi64(flags, tmp_desc);
	tmp_desc = _mm_and_si128(tmp_desc, desc_mask);

	/* checksum flags */
	tmp_desc = _mm_srli_epi32(tmp_desc, 4);
	flags = _mm_shuffle_epi8(cksum_flags, tmp_desc);
	/* then we shift left 1 bit */
	flags = _mm_slli_epi32(flags, 1);

	__m128i l4_outer_mask = _mm_set_epi32(0x6, 0x6, 0x6, 0x6);
	__m128i l4_outer_flags = _mm_and_si128(flags, l4_outer_mask);
	l4_outer_flags = _mm_slli_epi32(l4_outer_flags, 20);

	__m128i l3_l4_mask = _mm_set_epi32(~0x6, ~0x6, ~0x6, ~0x6);
	__m128i l3_l4_flags = _mm_and_si128(flags, l3_l4_mask);
	flags = _mm_or_si128(l3_l4_flags, l4_outer_flags);
	/* we need to mask out the reduntant bits introduced by RSS or
	 * VLAN fields.
	 */
	flags = _mm_and_si128(flags, cksum_mask);

	/* RSS, VLAN flag */
	tmp_desc = _mm_srli_epi32(tmp_desc, 8);
	rss_vlan = _mm_shuffle_epi8(rss_vlan_flags, tmp_desc);

	/* merge the flags */
	flags = _mm_or_si128(flags, rss_vlan);

	if (rxq->fdir_enabled) {
		const __m128i fdir_id0_1 =
			_mm_unpackhi_epi32(descs[0], descs[1]);

		const __m128i fdir_id2_3 =
			_mm_unpackhi_epi32(descs[2], descs[3]);

		const __m128i fdir_id0_3 =
			_mm_unpackhi_epi64(fdir_id0_1, fdir_id2_3);

		const __m128i fdir_flags =
			ice_flex_rxd_to_fdir_flags_vec(fdir_id0_3);

		/* merge with fdir_flags */
		flags = _mm_or_si128(flags, fdir_flags);

		/* write fdir_id to mbuf */
		rx_pkts[0]->hash.fdir.hi =
			_mm_extract_epi32(fdir_id0_3, 0);

		rx_pkts[1]->hash.fdir.hi =
			_mm_extract_epi32(fdir_id0_3, 1);

		rx_pkts[2]->hash.fdir.hi =
			_mm_extract_epi32(fdir_id0_3, 2);

		rx_pkts[3]->hash.fdir.hi =
			_mm_extract_epi32(fdir_id0_3, 3);
	} /* if() on fdir_enabled */

	/**
	 * At this point, we have the 4 sets of flags in the low 16-bits
	 * of each 32-bit value in flags.
	 * We want to extract these, and merge them with the mbuf init data
	 * so we can do a single 16-byte write to the mbuf to set the flags
	 * and all the other initialization fields. Extracting the
	 * appropriate flags means that we have to do a shift and blend for
	 * each mbuf before we do the write.
	 */
	rearm0 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 8), 0x30);
	rearm1 = _mm_blend_epi16(mbuf_init, _mm_slli_si128(flags, 4), 0x30);
	rearm2 = _mm_blend_epi16(mbuf_init, flags, 0x30);
	rearm3 = _mm_blend_epi16(mbuf_init, _mm_srli_si128(flags, 4), 0x30);

	/* write the rearm data and the olflags in one write */
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, ol_flags) !=
			 offsetof(struct rte_mbuf, rearm_data) + 8);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, rearm_data) !=
			 RTE_ALIGN(offsetof(struct rte_mbuf, rearm_data), 16));
	_mm_store_si128((__m128i *)&rx_pkts[0]->rearm_data, rearm0);
	_mm_store_si128((__m128i *)&rx_pkts[1]->rearm_data, rearm1);
	_mm_store_si128((__m128i *)&rx_pkts[2]->rearm_data, rearm2);
	_mm_store_si128((__m128i *)&rx_pkts[3]->rearm_data, rearm3);
}

static inline void
ice_rx_desc_to_ptype_v(__m128i descs[4], struct rte_mbuf **rx_pkts,
		       uint32_t *ptype_tbl)
{
	const __m128i ptype_mask = _mm_set_epi16(ICE_RX_FLEX_DESC_PTYPE_M, 0,
						 ICE_RX_FLEX_DESC_PTYPE_M, 0,
						 ICE_RX_FLEX_DESC_PTYPE_M, 0,
						 ICE_RX_FLEX_DESC_PTYPE_M, 0);
	__m128i ptype_01 = _mm_unpacklo_epi32(descs[0], descs[1]);
	__m128i ptype_23 = _mm_unpacklo_epi32(descs[2], descs[3]);
	__m128i ptype_all = _mm_unpacklo_epi64(ptype_01, ptype_23);

	ptype_all = _mm_and_si128(ptype_all, ptype_mask);

	rx_pkts[0]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 1)];
	rx_pkts[1]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 3)];
	rx_pkts[2]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 5)];
	rx_pkts[3]->packet_type = ptype_tbl[_mm_extract_epi16(ptype_all, 7)];
}

/**
 * vPMD raw receive routine, only accept(nb_pkts >= ICE_DESCS_PER_LOOP)
 *
 * Notice:
 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
 * - floor align nb_pkts to a ICE_DESCS_PER_LOOP power-of-two
 */
static inline uint16_t
_ice_recv_raw_pkts_vec(struct ice_rx_queue *rxq, struct rte_mbuf **rx_pkts,
		       uint16_t nb_pkts, uint8_t *split_packet)
{
	volatile union ice_rx_flex_desc *rxdp;
	struct ice_rx_entry *sw_ring;
	uint16_t nb_pkts_recd;
	int pos;
	uint64_t var;
	uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
	__m128i crc_adjust = _mm_set_epi16
				(0, 0, 0,       /* ignore non-length fields */
				 -rxq->crc_len, /* sub crc on data_len */
				 0,          /* ignore high-16bits of pkt_len */
				 -rxq->crc_len, /* sub crc on pkt_len */
				 0, 0           /* ignore pkt_type field */
				);
	const __m128i zero = _mm_setzero_si128();
	/* mask to shuffle from desc. to mbuf */
	const __m128i shuf_msk = _mm_set_epi8
			(0xFF, 0xFF,
			 0xFF, 0xFF,  /* rss hash parsed separately */
			 11, 10,      /* octet 10~11, 16 bits vlan_macip */
			 5, 4,        /* octet 4~5, 16 bits data_len */
			 0xFF, 0xFF,  /* skip high 16 bits pkt_len, zero out */
			 5, 4,        /* octet 4~5, low 16 bits pkt_len */
			 0xFF, 0xFF,  /* pkt_type set as unknown */
			 0xFF, 0xFF   /* pkt_type set as unknown */
			);
	const __m128i eop_shuf_mask = _mm_set_epi8(0xFF, 0xFF,
						   0xFF, 0xFF,
						   0xFF, 0xFF,
						   0xFF, 0xFF,
						   0xFF, 0xFF,
						   0xFF, 0xFF,
						   0x04, 0x0C,
						   0x00, 0x08);

	/**
	 * compile-time check the above crc_adjust layout is correct.
	 * NOTE: the first field (lowest address) is given last in set_epi16
	 * call above.
	 */
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);

	/* 4 packets DD mask */
	const __m128i dd_check = _mm_set_epi64x(0x0000000100000001LL,
						0x0000000100000001LL);
	/* 4 packets EOP mask */
	const __m128i eop_check = _mm_set_epi64x(0x0000000200000002LL,
						 0x0000000200000002LL);

	/* nb_pkts has to be floor-aligned to ICE_DESCS_PER_LOOP */
	nb_pkts = RTE_ALIGN_FLOOR(nb_pkts, ICE_DESCS_PER_LOOP);

	/* Just the act of getting into the function from the application is
	 * going to cost about 7 cycles
	 */
	rxdp = rxq->rx_ring + rxq->rx_tail;

	rte_prefetch0(rxdp);

	/* See if we need to rearm the RX queue - gives the prefetch a bit
	 * of time to act
	 */
	if (rxq->rxrearm_nb > ICE_RXQ_REARM_THRESH)
		ice_rxq_rearm(rxq);

	/* Before we start moving massive data around, check to see if
	 * there is actually a packet available
	 */
	if (!(rxdp->wb.status_error0 &
	      rte_cpu_to_le_32(1 << ICE_RX_FLEX_DESC_STATUS0_DD_S)))
		return 0;

	/**
	 * Compile-time verify the shuffle mask
	 * NOTE: some field positions already verified above, but duplicated
	 * here for completeness in case of future modifications.
	 */
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, pkt_len) !=
			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 4);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, data_len) !=
			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 8);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, vlan_tci) !=
			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 10);
	RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, hash) !=
			 offsetof(struct rte_mbuf, rx_descriptor_fields1) + 12);

	/* Cache is empty -> need to scan the buffer rings, but first move
	 * the next 'n' mbufs into the cache
	 */
	sw_ring = &rxq->sw_ring[rxq->rx_tail];

	/* A. load 4 packet in one loop
	 * [A*. mask out 4 unused dirty field in desc]
	 * B. copy 4 mbuf point from swring to rx_pkts
	 * C. calc the number of DD bits among the 4 packets
	 * [C*. extract the end-of-packet bit, if requested]
	 * D. fill info. from desc to mbuf
	 */

	for (pos = 0, nb_pkts_recd = 0; pos < nb_pkts;
	     pos += ICE_DESCS_PER_LOOP,
	     rxdp += ICE_DESCS_PER_LOOP) {
		__m128i descs[ICE_DESCS_PER_LOOP];
		__m128i pkt_mb0, pkt_mb1, pkt_mb2, pkt_mb3;
		__m128i staterr, sterr_tmp1, sterr_tmp2;
		/* 2 64 bit or 4 32 bit mbuf pointers in one XMM reg. */
		__m128i mbp1;
#if defined(RTE_ARCH_X86_64)
		__m128i mbp2;
#endif

		/* B.1 load 2 (64 bit) or 4 (32 bit) mbuf points */
		mbp1 = _mm_loadu_si128((__m128i *)&sw_ring[pos]);
		/* Read desc statuses backwards to avoid race condition */
		/* A.1 load 4 pkts desc */
		descs[3] = _mm_loadu_si128((__m128i *)(rxdp + 3));
		rte_compiler_barrier();

		/* B.2 copy 2 64 bit or 4 32 bit mbuf point into rx_pkts */
		_mm_storeu_si128((__m128i *)&rx_pkts[pos], mbp1);

#if defined(RTE_ARCH_X86_64)
		/* B.1 load 2 64 bit mbuf points */
		mbp2 = _mm_loadu_si128((__m128i *)&sw_ring[pos + 2]);
#endif

		descs[2] = _mm_loadu_si128((__m128i *)(rxdp + 2));
		rte_compiler_barrier();
		/* B.1 load 2 mbuf point */
		descs[1] = _mm_loadu_si128((__m128i *)(rxdp + 1));
		rte_compiler_barrier();
		descs[0] = _mm_loadu_si128((__m128i *)(rxdp));

#if defined(RTE_ARCH_X86_64)
		/* B.2 copy 2 mbuf point into rx_pkts  */
		_mm_storeu_si128((__m128i *)&rx_pkts[pos + 2], mbp2);
#endif

		if (split_packet) {
			rte_mbuf_prefetch_part2(rx_pkts[pos]);
			rte_mbuf_prefetch_part2(rx_pkts[pos + 1]);
			rte_mbuf_prefetch_part2(rx_pkts[pos + 2]);
			rte_mbuf_prefetch_part2(rx_pkts[pos + 3]);
		}

		/* avoid compiler reorder optimization */
		rte_compiler_barrier();

		/* D.1 pkt 3,4 convert format from desc to pktmbuf */
		pkt_mb3 = _mm_shuffle_epi8(descs[3], shuf_msk);
		pkt_mb2 = _mm_shuffle_epi8(descs[2], shuf_msk);

		/* D.1 pkt 1,2 convert format from desc to pktmbuf */
		pkt_mb1 = _mm_shuffle_epi8(descs[1], shuf_msk);
		pkt_mb0 = _mm_shuffle_epi8(descs[0], shuf_msk);

		/* C.1 4=>2 filter staterr info only */
		sterr_tmp2 = _mm_unpackhi_epi32(descs[3], descs[2]);
		/* C.1 4=>2 filter staterr info only */
		sterr_tmp1 = _mm_unpackhi_epi32(descs[1], descs[0]);

		ice_rx_desc_to_olflags_v(rxq, descs, &rx_pkts[pos]);

		/* D.2 pkt 3,4 set in_port/nb_seg and remove crc */
		pkt_mb3 = _mm_add_epi16(pkt_mb3, crc_adjust);
		pkt_mb2 = _mm_add_epi16(pkt_mb2, crc_adjust);

		/* D.2 pkt 1,2 set in_port/nb_seg and remove crc */
		pkt_mb1 = _mm_add_epi16(pkt_mb1, crc_adjust);
		pkt_mb0 = _mm_add_epi16(pkt_mb0, crc_adjust);

#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
		/**
		 * needs to load 2nd 16B of each desc for RSS hash parsing,
		 * will cause performance drop to get into this context.
		 */
		if (rxq->vsi->adapter->eth_dev->data->dev_conf.rxmode.offloads &
				DEV_RX_OFFLOAD_RSS_HASH) {
			/* load bottom half of every 32B desc */
			const __m128i raw_desc_bh3 =
				_mm_load_si128
					((void *)(&rxdp[3].wb.status_error1));
			rte_compiler_barrier();
			const __m128i raw_desc_bh2 =
				_mm_load_si128
					((void *)(&rxdp[2].wb.status_error1));
			rte_compiler_barrier();
			const __m128i raw_desc_bh1 =
				_mm_load_si128
					((void *)(&rxdp[1].wb.status_error1));
			rte_compiler_barrier();
			const __m128i raw_desc_bh0 =
				_mm_load_si128
					((void *)(&rxdp[0].wb.status_error1));

			/**
			 * to shift the 32b RSS hash value to the
			 * highest 32b of each 128b before mask
			 */
			__m128i rss_hash3 =
				_mm_slli_epi64(raw_desc_bh3, 32);
			__m128i rss_hash2 =
				_mm_slli_epi64(raw_desc_bh2, 32);
			__m128i rss_hash1 =
				_mm_slli_epi64(raw_desc_bh1, 32);
			__m128i rss_hash0 =
				_mm_slli_epi64(raw_desc_bh0, 32);

			__m128i rss_hash_msk =
				_mm_set_epi32(0xFFFFFFFF, 0, 0, 0);

			rss_hash3 = _mm_and_si128
					(rss_hash3, rss_hash_msk);
			rss_hash2 = _mm_and_si128
					(rss_hash2, rss_hash_msk);
			rss_hash1 = _mm_and_si128
					(rss_hash1, rss_hash_msk);
			rss_hash0 = _mm_and_si128
					(rss_hash0, rss_hash_msk);

			pkt_mb3 = _mm_or_si128(pkt_mb3, rss_hash3);
			pkt_mb2 = _mm_or_si128(pkt_mb2, rss_hash2);
			pkt_mb1 = _mm_or_si128(pkt_mb1, rss_hash1);
			pkt_mb0 = _mm_or_si128(pkt_mb0, rss_hash0);
		} /* if() on RSS hash parsing */
#endif

		/* C.2 get 4 pkts staterr value  */
		staterr = _mm_unpacklo_epi32(sterr_tmp1, sterr_tmp2);

		/* D.3 copy final 3,4 data to rx_pkts */
		_mm_storeu_si128
			((void *)&rx_pkts[pos + 3]->rx_descriptor_fields1,
			 pkt_mb3);
		_mm_storeu_si128
			((void *)&rx_pkts[pos + 2]->rx_descriptor_fields1,
			 pkt_mb2);

		/* C* extract and record EOP bit */
		if (split_packet) {
			/* and with mask to extract bits, flipping 1-0 */
			__m128i eop_bits = _mm_andnot_si128(staterr, eop_check);
			/* the staterr values are not in order, as the count
			 * count of dd bits doesn't care. However, for end of
			 * packet tracking, we do care, so shuffle. This also
			 * compresses the 32-bit values to 8-bit
			 */
			eop_bits = _mm_shuffle_epi8(eop_bits, eop_shuf_mask);
			/* store the resulting 32-bit value */
			*(int *)split_packet = _mm_cvtsi128_si32(eop_bits);
			split_packet += ICE_DESCS_PER_LOOP;
		}

		/* C.3 calc available number of desc */
		staterr = _mm_and_si128(staterr, dd_check);
		staterr = _mm_packs_epi32(staterr, zero);

		/* D.3 copy final 1,2 data to rx_pkts */
		_mm_storeu_si128
			((void *)&rx_pkts[pos + 1]->rx_descriptor_fields1,
			 pkt_mb1);
		_mm_storeu_si128((void *)&rx_pkts[pos]->rx_descriptor_fields1,
				 pkt_mb0);
		ice_rx_desc_to_ptype_v(descs, &rx_pkts[pos], ptype_tbl);
		/* C.4 calc avaialbe number of desc */
		var = __builtin_popcountll(_mm_cvtsi128_si64(staterr));
		nb_pkts_recd += var;
		if (likely(var != ICE_DESCS_PER_LOOP))
			break;
	}

	/* Update our internal tail pointer */
	rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_pkts_recd);
	rxq->rx_tail = (uint16_t)(rxq->rx_tail & (rxq->nb_rx_desc - 1));
	rxq->rxrearm_nb = (uint16_t)(rxq->rxrearm_nb + nb_pkts_recd);

	return nb_pkts_recd;
}

/**
 * Notice:
 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
 * - nb_pkts > ICE_VPMD_RX_BURST, only scan ICE_VPMD_RX_BURST
 *   numbers of DD bits
 */
uint16_t
ice_recv_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
		  uint16_t nb_pkts)
{
	return _ice_recv_raw_pkts_vec(rx_queue, rx_pkts, nb_pkts, NULL);
}

/**
 * vPMD receive routine that reassembles single burst of 32 scattered packets
 *
 * Notice:
 * - nb_pkts < ICE_DESCS_PER_LOOP, just return no packet
 */
static uint16_t
ice_recv_scattered_burst_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
			     uint16_t nb_pkts)
{
	struct ice_rx_queue *rxq = rx_queue;
	uint8_t split_flags[ICE_VPMD_RX_BURST] = {0};

	/* get some new buffers */
	uint16_t nb_bufs = _ice_recv_raw_pkts_vec(rxq, rx_pkts, nb_pkts,
						  split_flags);
	if (nb_bufs == 0)
		return 0;

	/* happy day case, full burst + no packets to be joined */
	const uint64_t *split_fl64 = (uint64_t *)split_flags;

	if (!rxq->pkt_first_seg &&
	    split_fl64[0] == 0 && split_fl64[1] == 0 &&
	    split_fl64[2] == 0 && split_fl64[3] == 0)
		return nb_bufs;

	/* reassemble any packets that need reassembly*/
	unsigned int i = 0;

	if (!rxq->pkt_first_seg) {
		/* find the first split flag, and only reassemble then*/
		while (i < nb_bufs && !split_flags[i])
			i++;
		if (i == nb_bufs)
			return nb_bufs;
		rxq->pkt_first_seg = rx_pkts[i];
	}
	return i + ice_rx_reassemble_packets(rxq, &rx_pkts[i], nb_bufs - i,
					     &split_flags[i]);
}

/**
 * vPMD receive routine that reassembles scattered packets.
 */
uint16_t
ice_recv_scattered_pkts_vec(void *rx_queue, struct rte_mbuf **rx_pkts,
			    uint16_t nb_pkts)
{
	uint16_t retval = 0;

	while (nb_pkts > ICE_VPMD_RX_BURST) {
		uint16_t burst;

		burst = ice_recv_scattered_burst_vec(rx_queue,
						     rx_pkts + retval,
						     ICE_VPMD_RX_BURST);
		retval += burst;
		nb_pkts -= burst;
		if (burst < ICE_VPMD_RX_BURST)
			return retval;
	}

	return retval + ice_recv_scattered_burst_vec(rx_queue,
						     rx_pkts + retval,
						     nb_pkts);
}

static inline void
ice_vtx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf *pkt,
	 uint64_t flags)
{
	uint64_t high_qw =
		(ICE_TX_DESC_DTYPE_DATA |
		 ((uint64_t)flags  << ICE_TXD_QW1_CMD_S) |
		 ((uint64_t)pkt->data_len << ICE_TXD_QW1_TX_BUF_SZ_S));

	__m128i descriptor = _mm_set_epi64x(high_qw,
					    pkt->buf_iova + pkt->data_off);
	_mm_store_si128((__m128i *)txdp, descriptor);
}

static inline void
ice_vtx(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkt,
	uint16_t nb_pkts, uint64_t flags)
{
	int i;

	for (i = 0; i < nb_pkts; ++i, ++txdp, ++pkt)
		ice_vtx1(txdp, *pkt, flags);
}

static uint16_t
ice_xmit_fixed_burst_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
			 uint16_t nb_pkts)
{
	struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;
	volatile struct ice_tx_desc *txdp;
	struct ice_tx_entry *txep;
	uint16_t n, nb_commit, tx_id;
	uint64_t flags = ICE_TD_CMD;
	uint64_t rs = ICE_TX_DESC_CMD_RS | ICE_TD_CMD;
	int i;

	/* cross rx_thresh boundary is not allowed */
	nb_pkts = RTE_MIN(nb_pkts, txq->tx_rs_thresh);

	if (txq->nb_tx_free < txq->tx_free_thresh)
		ice_tx_free_bufs_vec(txq);

	nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
	nb_commit = nb_pkts;
	if (unlikely(nb_pkts == 0))
		return 0;

	tx_id = txq->tx_tail;
	txdp = &txq->tx_ring[tx_id];
	txep = &txq->sw_ring[tx_id];

	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);

	n = (uint16_t)(txq->nb_tx_desc - tx_id);
	if (nb_commit >= n) {
		ice_tx_backlog_entry(txep, tx_pkts, n);

		for (i = 0; i < n - 1; ++i, ++tx_pkts, ++txdp)
			ice_vtx1(txdp, *tx_pkts, flags);

		ice_vtx1(txdp, *tx_pkts++, rs);

		nb_commit = (uint16_t)(nb_commit - n);

		tx_id = 0;
		txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);

		/* avoid reach the end of ring */
		txdp = &txq->tx_ring[tx_id];
		txep = &txq->sw_ring[tx_id];
	}

	ice_tx_backlog_entry(txep, tx_pkts, nb_commit);

	ice_vtx(txdp, tx_pkts, nb_commit, flags);

	tx_id = (uint16_t)(tx_id + nb_commit);
	if (tx_id > txq->tx_next_rs) {
		txq->tx_ring[txq->tx_next_rs].cmd_type_offset_bsz |=
			rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
					 ICE_TXD_QW1_CMD_S);
		txq->tx_next_rs =
			(uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
	}

	txq->tx_tail = tx_id;

	ICE_PCI_REG_WC_WRITE(txq->qtx_tail, txq->tx_tail);

	return nb_pkts;
}

uint16_t
ice_xmit_pkts_vec(void *tx_queue, struct rte_mbuf **tx_pkts,
		  uint16_t nb_pkts)
{
	uint16_t nb_tx = 0;
	struct ice_tx_queue *txq = (struct ice_tx_queue *)tx_queue;

	while (nb_pkts) {
		uint16_t ret, num;

		num = (uint16_t)RTE_MIN(nb_pkts, txq->tx_rs_thresh);
		ret = ice_xmit_fixed_burst_vec(tx_queue, &tx_pkts[nb_tx], num);
		nb_tx += ret;
		nb_pkts -= ret;
		if (ret < num)
			break;
	}

	return nb_tx;
}

int __rte_cold
ice_rxq_vec_setup(struct ice_rx_queue *rxq)
{
	if (!rxq)
		return -1;

	rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs_vec;
	return ice_rxq_vec_setup_default(rxq);
}

int __rte_cold
ice_txq_vec_setup(struct ice_tx_queue __rte_unused *txq)
{
	if (!txq)
		return -1;

	txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs_vec;
	return 0;
}

int __rte_cold
ice_rx_vec_dev_check(struct rte_eth_dev *dev)
{
	return ice_rx_vec_dev_check_default(dev);
}

int __rte_cold
ice_tx_vec_dev_check(struct rte_eth_dev *dev)
{
	return ice_tx_vec_dev_check_default(dev);
}