DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2019 Intel Corporation
 */

#ifndef _ICE_RXTX_VEC_COMMON_H_
#define _ICE_RXTX_VEC_COMMON_H_

#include "ice_rxtx.h"

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif

static inline uint16_t
ice_rx_reassemble_packets(struct ice_rx_queue *rxq, struct rte_mbuf **rx_bufs,
			  uint16_t nb_bufs, uint8_t *split_flags)
{
	struct rte_mbuf *pkts[ICE_VPMD_RX_BURST] = {0}; /*finished pkts*/
	struct rte_mbuf *start = rxq->pkt_first_seg;
	struct rte_mbuf *end =  rxq->pkt_last_seg;
	unsigned int pkt_idx, buf_idx;

	for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
		if (end) {
			/* processing a split packet */
			end->next = rx_bufs[buf_idx];
			rx_bufs[buf_idx]->data_len += rxq->crc_len;

			start->nb_segs++;
			start->pkt_len += rx_bufs[buf_idx]->data_len;
			end = end->next;

			if (!split_flags[buf_idx]) {
				/* it's the last packet of the set */
				start->hash = end->hash;
				start->vlan_tci = end->vlan_tci;
				start->ol_flags = end->ol_flags;
				/* we need to strip crc for the whole packet */
				start->pkt_len -= rxq->crc_len;
				if (end->data_len > rxq->crc_len) {
					end->data_len -= rxq->crc_len;
				} else {
					/* free up last mbuf */
					struct rte_mbuf *secondlast = start;

					start->nb_segs--;
					while (secondlast->next != end)
						secondlast = secondlast->next;
					secondlast->data_len -= (rxq->crc_len -
							end->data_len);
					secondlast->next = NULL;
					rte_pktmbuf_free_seg(end);
				}
				pkts[pkt_idx++] = start;
				start = NULL;
				end = NULL;
			}
		} else {
			/* not processing a split packet */
			if (!split_flags[buf_idx]) {
				/* not a split packet, save and skip */
				pkts[pkt_idx++] = rx_bufs[buf_idx];
				continue;
			}
			start = rx_bufs[buf_idx];
			end = start;
			rx_bufs[buf_idx]->data_len += rxq->crc_len;
			rx_bufs[buf_idx]->pkt_len += rxq->crc_len;
		}
	}

	/* save the partial packet for next time */
	rxq->pkt_first_seg = start;
	rxq->pkt_last_seg = end;
	rte_memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
	return pkt_idx;
}

static __rte_always_inline int
ice_tx_free_bufs_vec(struct ice_tx_queue *txq)
{
	struct ice_tx_entry *txep;
	uint32_t n;
	uint32_t i;
	int nb_free = 0;
	struct rte_mbuf *m, *free[ICE_TX_MAX_FREE_BUF_SZ];

	/* check DD bits on threshold descriptor */
	if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
			rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
			rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
		return 0;

	n = txq->tx_rs_thresh;

	 /* first buffer to free from S/W ring is at index
	  * tx_next_dd - (tx_rs_thresh-1)
	  */
	txep = &txq->sw_ring[txq->tx_next_dd - (n - 1)];
	m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
	if (likely(m)) {
		free[0] = m;
		nb_free = 1;
		for (i = 1; i < n; i++) {
			m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
			if (likely(m)) {
				if (likely(m->pool == free[0]->pool)) {
					free[nb_free++] = m;
				} else {
					rte_mempool_put_bulk(free[0]->pool,
							     (void *)free,
							     nb_free);
					free[0] = m;
					nb_free = 1;
				}
			}
		}
		rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
	} else {
		for (i = 1; i < n; i++) {
			m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
			if (m)
				rte_mempool_put(m->pool, m);
		}
	}

	/* buffers were freed, update counters */
	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
	txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
	if (txq->tx_next_dd >= txq->nb_tx_desc)
		txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);

	return txq->tx_rs_thresh;
}

static __rte_always_inline void
ice_tx_backlog_entry(struct ice_tx_entry *txep,
		     struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
	int i;

	for (i = 0; i < (int)nb_pkts; ++i)
		txep[i].mbuf = tx_pkts[i];
}

static inline void
_ice_rx_queue_release_mbufs_vec(struct ice_rx_queue *rxq)
{
	const unsigned int mask = rxq->nb_rx_desc - 1;
	unsigned int i;

	if (unlikely(!rxq->sw_ring)) {
		PMD_DRV_LOG(DEBUG, "sw_ring is NULL");
		return;
	}

	if (rxq->rxrearm_nb >= rxq->nb_rx_desc)
		return;

	/* free all mbufs that are valid in the ring */
	if (rxq->rxrearm_nb == 0) {
		for (i = 0; i < rxq->nb_rx_desc; i++) {
			if (rxq->sw_ring[i].mbuf)
				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
		}
	} else {
		for (i = rxq->rx_tail;
		     i != rxq->rxrearm_start;
		     i = (i + 1) & mask) {
			if (rxq->sw_ring[i].mbuf)
				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
		}
	}

	rxq->rxrearm_nb = rxq->nb_rx_desc;

	/* set all entries to NULL */
	memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
}

static inline void
_ice_tx_queue_release_mbufs_vec(struct ice_tx_queue *txq)
{
	uint16_t i;

	if (unlikely(!txq || !txq->sw_ring)) {
		PMD_DRV_LOG(DEBUG, "Pointer to rxq or sw_ring is NULL");
		return;
	}

	/**
	 *  vPMD tx will not set sw_ring's mbuf to NULL after free,
	 *  so need to free remains more carefully.
	 */
	i = txq->tx_next_dd - txq->tx_rs_thresh + 1;

#ifdef CC_AVX512_SUPPORT
	struct rte_eth_dev *dev = txq->vsi->adapter->eth_dev;

	if (dev->tx_pkt_burst == ice_xmit_pkts_vec_avx512 ||
	    dev->tx_pkt_burst == ice_xmit_pkts_vec_avx512_offload) {
		struct ice_vec_tx_entry *swr = (void *)txq->sw_ring;

		if (txq->tx_tail < i) {
			for (; i < txq->nb_tx_desc; i++) {
				rte_pktmbuf_free_seg(swr[i].mbuf);
				swr[i].mbuf = NULL;
			}
			i = 0;
		}
		for (; i < txq->tx_tail; i++) {
			rte_pktmbuf_free_seg(swr[i].mbuf);
			swr[i].mbuf = NULL;
		}
	} else
#endif
	{
		if (txq->tx_tail < i) {
			for (; i < txq->nb_tx_desc; i++) {
				rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
				txq->sw_ring[i].mbuf = NULL;
			}
			i = 0;
		}
		for (; i < txq->tx_tail; i++) {
			rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
			txq->sw_ring[i].mbuf = NULL;
		}
	}
}

static inline int
ice_rxq_vec_setup_default(struct ice_rx_queue *rxq)
{
	uintptr_t p;
	struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */

	mb_def.nb_segs = 1;
	mb_def.data_off = RTE_PKTMBUF_HEADROOM;
	mb_def.port = rxq->port_id;
	rte_mbuf_refcnt_set(&mb_def, 1);

	/* prevent compiler reordering: rearm_data covers previous fields */
	rte_compiler_barrier();
	p = (uintptr_t)&mb_def.rearm_data;
	rxq->mbuf_initializer = *(uint64_t *)p;
	return 0;
}

#define ICE_TX_NO_VECTOR_FLAGS (			\
		DEV_TX_OFFLOAD_MULTI_SEGS |		\
		DEV_TX_OFFLOAD_OUTER_IPV4_CKSUM |	\
		DEV_TX_OFFLOAD_TCP_TSO)

#define ICE_TX_VECTOR_OFFLOAD (				\
		DEV_TX_OFFLOAD_VLAN_INSERT |		\
		DEV_TX_OFFLOAD_QINQ_INSERT |		\
		DEV_TX_OFFLOAD_IPV4_CKSUM |		\
		DEV_TX_OFFLOAD_SCTP_CKSUM |		\
		DEV_TX_OFFLOAD_UDP_CKSUM |		\
		DEV_TX_OFFLOAD_TCP_CKSUM)

#define ICE_RX_VECTOR_OFFLOAD (				\
		DEV_RX_OFFLOAD_CHECKSUM |		\
		DEV_RX_OFFLOAD_SCTP_CKSUM |		\
		DEV_RX_OFFLOAD_VLAN |			\
		DEV_RX_OFFLOAD_RSS_HASH)

#define ICE_VECTOR_PATH		0
#define ICE_VECTOR_OFFLOAD_PATH	1

static inline int
ice_rx_vec_queue_default(struct ice_rx_queue *rxq)
{
	if (!rxq)
		return -1;

	if (!rte_is_power_of_2(rxq->nb_rx_desc))
		return -1;

	if (rxq->rx_free_thresh < ICE_VPMD_RX_BURST)
		return -1;

	if (rxq->nb_rx_desc % rxq->rx_free_thresh)
		return -1;

	if (rxq->proto_xtr != PROTO_XTR_NONE)
		return -1;

	if (rxq->offloads & ICE_RX_VECTOR_OFFLOAD)
		return ICE_VECTOR_OFFLOAD_PATH;

	return ICE_VECTOR_PATH;
}

static inline int
ice_tx_vec_queue_default(struct ice_tx_queue *txq)
{
	if (!txq)
		return -1;

	if (txq->tx_rs_thresh < ICE_VPMD_TX_BURST ||
	    txq->tx_rs_thresh > ICE_TX_MAX_FREE_BUF_SZ)
		return -1;

	if (txq->offloads & ICE_TX_NO_VECTOR_FLAGS)
		return -1;

	if (txq->offloads & ICE_TX_VECTOR_OFFLOAD)
		return ICE_VECTOR_OFFLOAD_PATH;

	return ICE_VECTOR_PATH;
}

static inline int
ice_rx_vec_dev_check_default(struct rte_eth_dev *dev)
{
	int i;
	struct ice_rx_queue *rxq;
	int ret = 0;
	int result = 0;

	for (i = 0; i < dev->data->nb_rx_queues; i++) {
		rxq = dev->data->rx_queues[i];
		ret = (ice_rx_vec_queue_default(rxq));
		if (ret < 0)
			return -1;
		if (ret == ICE_VECTOR_OFFLOAD_PATH)
			result = ret;
	}

	return result;
}

static inline int
ice_tx_vec_dev_check_default(struct rte_eth_dev *dev)
{
	int i;
	struct ice_tx_queue *txq;
	int ret = 0;
	int result = 0;

	for (i = 0; i < dev->data->nb_tx_queues; i++) {
		txq = dev->data->tx_queues[i];
		ret = ice_tx_vec_queue_default(txq);
		if (ret < 0)
			return -1;
		if (ret == ICE_VECTOR_OFFLOAD_PATH)
			result = ret;
	}

	return result;
}

#ifdef CC_AVX2_SUPPORT
static __rte_always_inline void
ice_rxq_rearm_common(struct ice_rx_queue *rxq, __rte_unused bool avx512)
{
	int i;
	uint16_t rx_id;
	volatile union ice_rx_flex_desc *rxdp;
	struct ice_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];

	rxdp = rxq->rx_ring + rxq->rxrearm_start;

	/* Pull 'n' more MBUFs into the software ring */
	if (rte_mempool_get_bulk(rxq->mp,
				 (void *)rxep,
				 ICE_RXQ_REARM_THRESH) < 0) {
		if (rxq->rxrearm_nb + ICE_RXQ_REARM_THRESH >=
		    rxq->nb_rx_desc) {
			__m128i dma_addr0;

			dma_addr0 = _mm_setzero_si128();
			for (i = 0; i < ICE_DESCS_PER_LOOP; i++) {
				rxep[i].mbuf = &rxq->fake_mbuf;
				_mm_store_si128((__m128i *)&rxdp[i].read,
						dma_addr0);
			}
		}
		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
			ICE_RXQ_REARM_THRESH;
		return;
	}

#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
	struct rte_mbuf *mb0, *mb1;
	__m128i dma_addr0, dma_addr1;
	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
			RTE_PKTMBUF_HEADROOM);
	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
	for (i = 0; i < ICE_RXQ_REARM_THRESH; i += 2, rxep += 2) {
		__m128i vaddr0, vaddr1;

		mb0 = rxep[0].mbuf;
		mb1 = rxep[1].mbuf;

		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
				offsetof(struct rte_mbuf, buf_addr) + 8);
		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);

		/* convert pa to dma_addr hdr/data */
		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);

		/* add headroom to pa values */
		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);

		/* flush desc with pa dma_addr */
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
	}
#else
#ifdef CC_AVX512_SUPPORT
	if (avx512) {
		struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
		struct rte_mbuf *mb4, *mb5, *mb6, *mb7;
		__m512i dma_addr0_3, dma_addr4_7;
		__m512i hdr_room = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
		/* Initialize the mbufs in vector, process 8 mbufs in one loop */
		for (i = 0; i < ICE_RXQ_REARM_THRESH;
				i += 8, rxep += 8, rxdp += 8) {
			__m128i vaddr0, vaddr1, vaddr2, vaddr3;
			__m128i vaddr4, vaddr5, vaddr6, vaddr7;
			__m256i vaddr0_1, vaddr2_3;
			__m256i vaddr4_5, vaddr6_7;
			__m512i vaddr0_3, vaddr4_7;

			mb0 = rxep[0].mbuf;
			mb1 = rxep[1].mbuf;
			mb2 = rxep[2].mbuf;
			mb3 = rxep[3].mbuf;
			mb4 = rxep[4].mbuf;
			mb5 = rxep[5].mbuf;
			mb6 = rxep[6].mbuf;
			mb7 = rxep[7].mbuf;

			/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
			RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
					offsetof(struct rte_mbuf, buf_addr) + 8);
			vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
			vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
			vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
			vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
			vaddr4 = _mm_loadu_si128((__m128i *)&mb4->buf_addr);
			vaddr5 = _mm_loadu_si128((__m128i *)&mb5->buf_addr);
			vaddr6 = _mm_loadu_si128((__m128i *)&mb6->buf_addr);
			vaddr7 = _mm_loadu_si128((__m128i *)&mb7->buf_addr);

			/**
			 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
			 * into the high lanes. Similarly for 2 & 3, and so on.
			 */
			vaddr0_1 =
				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
							vaddr1, 1);
			vaddr2_3 =
				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
							vaddr3, 1);
			vaddr4_5 =
				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr4),
							vaddr5, 1);
			vaddr6_7 =
				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr6),
							vaddr7, 1);
			vaddr0_3 =
				_mm512_inserti64x4(_mm512_castsi256_si512(vaddr0_1),
							vaddr2_3, 1);
			vaddr4_7 =
				_mm512_inserti64x4(_mm512_castsi256_si512(vaddr4_5),
							vaddr6_7, 1);

			/* convert pa to dma_addr hdr/data */
			dma_addr0_3 = _mm512_unpackhi_epi64(vaddr0_3, vaddr0_3);
			dma_addr4_7 = _mm512_unpackhi_epi64(vaddr4_7, vaddr4_7);

			/* add headroom to pa values */
			dma_addr0_3 = _mm512_add_epi64(dma_addr0_3, hdr_room);
			dma_addr4_7 = _mm512_add_epi64(dma_addr4_7, hdr_room);

			/* flush desc with pa dma_addr */
			_mm512_store_si512((__m512i *)&rxdp->read, dma_addr0_3);
			_mm512_store_si512((__m512i *)&(rxdp + 4)->read, dma_addr4_7);
		}
	} else
#endif
	{
		struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
		__m256i dma_addr0_1, dma_addr2_3;
		__m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
		/* Initialize the mbufs in vector, process 4 mbufs in one loop */
		for (i = 0; i < ICE_RXQ_REARM_THRESH;
				i += 4, rxep += 4, rxdp += 4) {
			__m128i vaddr0, vaddr1, vaddr2, vaddr3;
			__m256i vaddr0_1, vaddr2_3;

			mb0 = rxep[0].mbuf;
			mb1 = rxep[1].mbuf;
			mb2 = rxep[2].mbuf;
			mb3 = rxep[3].mbuf;

			/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
			RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
					offsetof(struct rte_mbuf, buf_addr) + 8);
			vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
			vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
			vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
			vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);

			/**
			 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
			 * into the high lanes. Similarly for 2 & 3
			 */
			vaddr0_1 =
				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
							vaddr1, 1);
			vaddr2_3 =
				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
							vaddr3, 1);

			/* convert pa to dma_addr hdr/data */
			dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
			dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);

			/* add headroom to pa values */
			dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
			dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);

			/* flush desc with pa dma_addr */
			_mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
			_mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
		}
	}

#endif

	rxq->rxrearm_start += ICE_RXQ_REARM_THRESH;
	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
		rxq->rxrearm_start = 0;

	rxq->rxrearm_nb -= ICE_RXQ_REARM_THRESH;

	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
			     (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));

	/* Update the tail pointer on the NIC */
	ICE_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
}
#endif

static inline void
ice_txd_enable_offload(struct rte_mbuf *tx_pkt,
		       uint64_t *txd_hi)
{
	uint64_t ol_flags = tx_pkt->ol_flags;
	uint32_t td_cmd = 0;
	uint32_t td_offset = 0;

	/* Tx Checksum Offload */
	/* SET MACLEN */
	td_offset |= (tx_pkt->l2_len >> 1) <<
			ICE_TX_DESC_LEN_MACLEN_S;

	/* Enable L3 checksum offload */
	if (ol_flags & PKT_TX_IP_CKSUM) {
		td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
		td_offset |= (tx_pkt->l3_len >> 2) <<
			ICE_TX_DESC_LEN_IPLEN_S;
	} else if (ol_flags & PKT_TX_IPV4) {
		td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
		td_offset |= (tx_pkt->l3_len >> 2) <<
			ICE_TX_DESC_LEN_IPLEN_S;
	} else if (ol_flags & PKT_TX_IPV6) {
		td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
		td_offset |= (tx_pkt->l3_len >> 2) <<
			ICE_TX_DESC_LEN_IPLEN_S;
	}

	/* Enable L4 checksum offloads */
	switch (ol_flags & PKT_TX_L4_MASK) {
	case PKT_TX_TCP_CKSUM:
		td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
		td_offset |= (sizeof(struct rte_tcp_hdr) >> 2) <<
			ICE_TX_DESC_LEN_L4_LEN_S;
		break;
	case PKT_TX_SCTP_CKSUM:
		td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
		td_offset |= (sizeof(struct rte_sctp_hdr) >> 2) <<
			ICE_TX_DESC_LEN_L4_LEN_S;
		break;
	case PKT_TX_UDP_CKSUM:
		td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
		td_offset |= (sizeof(struct rte_udp_hdr) >> 2) <<
			ICE_TX_DESC_LEN_L4_LEN_S;
		break;
	default:
		break;
	}

	*txd_hi |= ((uint64_t)td_offset) << ICE_TXD_QW1_OFFSET_S;

	/* Tx VLAN/QINQ insertion Offload */
	if (ol_flags & (PKT_TX_VLAN | PKT_TX_QINQ)) {
		td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
		*txd_hi |= ((uint64_t)tx_pkt->vlan_tci <<
				ICE_TXD_QW1_L2TAG1_S);
	}

	*txd_hi |= ((uint64_t)td_cmd) << ICE_TXD_QW1_CMD_S;
}
#endif