DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2010-2015 Intel Corporation
 */

#ifndef _I40E_RXTX_VEC_COMMON_H_
#define _I40E_RXTX_VEC_COMMON_H_
#include <stdint.h>
#include <ethdev_driver.h>
#include <rte_malloc.h>

#include "i40e_ethdev.h"
#include "i40e_rxtx.h"

#ifndef __INTEL_COMPILER
#pragma GCC diagnostic ignored "-Wcast-qual"
#endif

static inline uint16_t
reassemble_packets(struct i40e_rx_queue *rxq, struct rte_mbuf **rx_bufs,
		   uint16_t nb_bufs, uint8_t *split_flags)
{
	struct rte_mbuf *pkts[RTE_I40E_VPMD_RX_BURST]; /*finished pkts*/
	struct rte_mbuf *start = rxq->pkt_first_seg;
	struct rte_mbuf *end =  rxq->pkt_last_seg;
	unsigned pkt_idx, buf_idx;

	for (buf_idx = 0, pkt_idx = 0; buf_idx < nb_bufs; buf_idx++) {
		if (end != NULL) {
			/* processing a split packet */
			end->next = rx_bufs[buf_idx];
			rx_bufs[buf_idx]->data_len += rxq->crc_len;

			start->nb_segs++;
			start->pkt_len += rx_bufs[buf_idx]->data_len;
			end = end->next;

			if (!split_flags[buf_idx]) {
				/* it's the last packet of the set */
				start->hash = end->hash;
				start->vlan_tci = end->vlan_tci;
				start->ol_flags = end->ol_flags;
				/* we need to strip crc for the whole packet */
				start->pkt_len -= rxq->crc_len;
				if (end->data_len > rxq->crc_len)
					end->data_len -= rxq->crc_len;
				else {
					/* free up last mbuf */
					struct rte_mbuf *secondlast = start;

					start->nb_segs--;
					while (secondlast->next != end)
						secondlast = secondlast->next;
					secondlast->data_len -= (rxq->crc_len -
							end->data_len);
					secondlast->next = NULL;
					rte_pktmbuf_free_seg(end);
				}
				pkts[pkt_idx++] = start;
				start = end = NULL;
			}
		} else {
			/* not processing a split packet */
			if (!split_flags[buf_idx]) {
				/* not a split packet, save and skip */
				pkts[pkt_idx++] = rx_bufs[buf_idx];
				continue;
			}
			end = start = rx_bufs[buf_idx];
			rx_bufs[buf_idx]->data_len += rxq->crc_len;
			rx_bufs[buf_idx]->pkt_len += rxq->crc_len;
		}
	}

	/* save the partial packet for next time */
	rxq->pkt_first_seg = start;
	rxq->pkt_last_seg = end;
	memcpy(rx_bufs, pkts, pkt_idx * (sizeof(*pkts)));
	return pkt_idx;
}

static __rte_always_inline int
i40e_tx_free_bufs(struct i40e_tx_queue *txq)
{
	struct i40e_tx_entry *txep;
	uint32_t n;
	uint32_t i;
	int nb_free = 0;
	struct rte_mbuf *m, *free[RTE_I40E_TX_MAX_FREE_BUF_SZ];

	/* check DD bits on threshold descriptor */
	if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
			rte_cpu_to_le_64(I40E_TXD_QW1_DTYPE_MASK)) !=
			rte_cpu_to_le_64(I40E_TX_DESC_DTYPE_DESC_DONE))
		return 0;

	n = txq->tx_rs_thresh;

	 /* first buffer to free from S/W ring is at index
	  * tx_next_dd - (tx_rs_thresh-1)
	  */
	txep = &txq->sw_ring[txq->tx_next_dd - (n - 1)];
	m = rte_pktmbuf_prefree_seg(txep[0].mbuf);
	if (likely(m != NULL)) {
		free[0] = m;
		nb_free = 1;
		for (i = 1; i < n; i++) {
			m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
			if (likely(m != NULL)) {
				if (likely(m->pool == free[0]->pool)) {
					free[nb_free++] = m;
				} else {
					rte_mempool_put_bulk(free[0]->pool,
							     (void *)free,
							     nb_free);
					free[0] = m;
					nb_free = 1;
				}
			}
		}
		rte_mempool_put_bulk(free[0]->pool, (void **)free, nb_free);
	} else {
		for (i = 1; i < n; i++) {
			m = rte_pktmbuf_prefree_seg(txep[i].mbuf);
			if (m != NULL)
				rte_mempool_put(m->pool, m);
		}
	}

	/* buffers were freed, update counters */
	txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
	txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
	if (txq->tx_next_dd >= txq->nb_tx_desc)
		txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);

	return txq->tx_rs_thresh;
}

static __rte_always_inline void
tx_backlog_entry(struct i40e_tx_entry *txep,
		 struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
{
	int i;

	for (i = 0; i < (int)nb_pkts; ++i)
		txep[i].mbuf = tx_pkts[i];
}

static inline void
_i40e_rx_queue_release_mbufs_vec(struct i40e_rx_queue *rxq)
{
	const unsigned mask = rxq->nb_rx_desc - 1;
	unsigned i;

	if (rxq->sw_ring == NULL || rxq->rxrearm_nb >= rxq->nb_rx_desc)
		return;

	/* free all mbufs that are valid in the ring */
	if (rxq->rxrearm_nb == 0) {
		for (i = 0; i < rxq->nb_rx_desc; i++) {
			if (rxq->sw_ring[i].mbuf != NULL)
				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
		}
	} else {
		for (i = rxq->rx_tail;
		     i != rxq->rxrearm_start;
		     i = (i + 1) & mask) {
			if (rxq->sw_ring[i].mbuf != NULL)
				rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
		}
	}

	rxq->rxrearm_nb = rxq->nb_rx_desc;

	/* set all entries to NULL */
	memset(rxq->sw_ring, 0, sizeof(rxq->sw_ring[0]) * rxq->nb_rx_desc);
}

static inline int
i40e_rxq_vec_setup_default(struct i40e_rx_queue *rxq)
{
	uintptr_t p;
	struct rte_mbuf mb_def = { .buf_addr = 0 }; /* zeroed mbuf */

	mb_def.nb_segs = 1;
	mb_def.data_off = RTE_PKTMBUF_HEADROOM;
	mb_def.port = rxq->port_id;
	rte_mbuf_refcnt_set(&mb_def, 1);

	/* prevent compiler reordering: rearm_data covers previous fields */
	rte_compiler_barrier();
	p = (uintptr_t)&mb_def.rearm_data;
	rxq->mbuf_initializer = *(uint64_t *)p;
	return 0;
}

static inline int
i40e_rx_vec_dev_conf_condition_check_default(struct rte_eth_dev *dev)
{
#ifndef RTE_LIBRTE_IEEE1588
	struct i40e_adapter *ad =
		I40E_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
	struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
	struct rte_fdir_conf *fconf = &dev->data->dev_conf.fdir_conf;
	struct i40e_rx_queue *rxq;
	uint16_t desc, i;
	bool first_queue;

	/* no fdir support */
	if (fconf->mode != RTE_FDIR_MODE_NONE)
		return -1;

	 /* no header split support */
	if (rxmode->offloads & DEV_RX_OFFLOAD_HEADER_SPLIT)
		return -1;

	/* no QinQ support */
	if (rxmode->offloads & DEV_RX_OFFLOAD_VLAN_EXTEND)
		return -1;

	/**
	 * Vector mode is allowed only when number of Rx queue
	 * descriptor is power of 2.
	 */
	if (!dev->data->dev_started) {
		first_queue = true;
		for (i = 0; i < dev->data->nb_rx_queues; i++) {
			rxq = dev->data->rx_queues[i];
			if (!rxq)
				continue;
			desc = rxq->nb_rx_desc;
			if (first_queue)
				ad->rx_vec_allowed =
					rte_is_power_of_2(desc);
			else
				ad->rx_vec_allowed =
					ad->rx_vec_allowed ?
					rte_is_power_of_2(desc) :
					ad->rx_vec_allowed;
			first_queue = false;
		}
	} else {
		/* Only check the first queue's descriptor number */
		for (i = 0; i < dev->data->nb_rx_queues; i++) {
			rxq = dev->data->rx_queues[i];
			if (!rxq)
				continue;
			desc = rxq->nb_rx_desc;
			ad->rx_vec_allowed = rte_is_power_of_2(desc);
			break;
		}
	}

	return 0;
#else
	RTE_SET_USED(dev);
	return -1;
#endif
}

#ifdef CC_AVX2_SUPPORT
static __rte_always_inline void
i40e_rxq_rearm_common(struct i40e_rx_queue *rxq, __rte_unused bool avx512)
{
	int i;
	uint16_t rx_id;
	volatile union i40e_rx_desc *rxdp;
	struct i40e_rx_entry *rxep = &rxq->sw_ring[rxq->rxrearm_start];

	rxdp = rxq->rx_ring + rxq->rxrearm_start;

	/* Pull 'n' more MBUFs into the software ring */
	if (rte_mempool_get_bulk(rxq->mp,
				 (void *)rxep,
				 RTE_I40E_RXQ_REARM_THRESH) < 0) {
		if (rxq->rxrearm_nb + RTE_I40E_RXQ_REARM_THRESH >=
		    rxq->nb_rx_desc) {
			__m128i dma_addr0;
			dma_addr0 = _mm_setzero_si128();
			for (i = 0; i < RTE_I40E_DESCS_PER_LOOP; i++) {
				rxep[i].mbuf = &rxq->fake_mbuf;
				_mm_store_si128((__m128i *)&rxdp[i].read,
						dma_addr0);
			}
		}
		rte_eth_devices[rxq->port_id].data->rx_mbuf_alloc_failed +=
			RTE_I40E_RXQ_REARM_THRESH;
		return;
	}

#ifndef RTE_LIBRTE_I40E_16BYTE_RX_DESC
	struct rte_mbuf *mb0, *mb1;
	__m128i dma_addr0, dma_addr1;
	__m128i hdr_room = _mm_set_epi64x(RTE_PKTMBUF_HEADROOM,
			RTE_PKTMBUF_HEADROOM);
	/* Initialize the mbufs in vector, process 2 mbufs in one loop */
	for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH; i += 2, rxep += 2) {
		__m128i vaddr0, vaddr1;

		mb0 = rxep[0].mbuf;
		mb1 = rxep[1].mbuf;

		/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
		RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
				offsetof(struct rte_mbuf, buf_addr) + 8);
		vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
		vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);

		/* convert pa to dma_addr hdr/data */
		dma_addr0 = _mm_unpackhi_epi64(vaddr0, vaddr0);
		dma_addr1 = _mm_unpackhi_epi64(vaddr1, vaddr1);

		/* add headroom to pa values */
		dma_addr0 = _mm_add_epi64(dma_addr0, hdr_room);
		dma_addr1 = _mm_add_epi64(dma_addr1, hdr_room);

		/* flush desc with pa dma_addr */
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr0);
		_mm_store_si128((__m128i *)&rxdp++->read, dma_addr1);
	}
#else
#ifdef CC_AVX512_SUPPORT
	if (avx512) {
		struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
		struct rte_mbuf *mb4, *mb5, *mb6, *mb7;
		__m512i dma_addr0_3, dma_addr4_7;
		__m512i hdr_room = _mm512_set1_epi64(RTE_PKTMBUF_HEADROOM);
		/* Initialize the mbufs in vector, process 8 mbufs in one loop */
		for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH;
				i += 8, rxep += 8, rxdp += 8) {
			__m128i vaddr0, vaddr1, vaddr2, vaddr3;
			__m128i vaddr4, vaddr5, vaddr6, vaddr7;
			__m256i vaddr0_1, vaddr2_3;
			__m256i vaddr4_5, vaddr6_7;
			__m512i vaddr0_3, vaddr4_7;

			mb0 = rxep[0].mbuf;
			mb1 = rxep[1].mbuf;
			mb2 = rxep[2].mbuf;
			mb3 = rxep[3].mbuf;
			mb4 = rxep[4].mbuf;
			mb5 = rxep[5].mbuf;
			mb6 = rxep[6].mbuf;
			mb7 = rxep[7].mbuf;

			/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
			RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
					offsetof(struct rte_mbuf, buf_addr) + 8);
			vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
			vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
			vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
			vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);
			vaddr4 = _mm_loadu_si128((__m128i *)&mb4->buf_addr);
			vaddr5 = _mm_loadu_si128((__m128i *)&mb5->buf_addr);
			vaddr6 = _mm_loadu_si128((__m128i *)&mb6->buf_addr);
			vaddr7 = _mm_loadu_si128((__m128i *)&mb7->buf_addr);

			/**
			 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
			 * into the high lanes. Similarly for 2 & 3, and so on.
			 */
			vaddr0_1 =
				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr0),
							vaddr1, 1);
			vaddr2_3 =
				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr2),
							vaddr3, 1);
			vaddr4_5 =
				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr4),
							vaddr5, 1);
			vaddr6_7 =
				_mm256_inserti128_si256(_mm256_castsi128_si256(vaddr6),
							vaddr7, 1);
			vaddr0_3 =
				_mm512_inserti64x4(_mm512_castsi256_si512(vaddr0_1),
							vaddr2_3, 1);
			vaddr4_7 =
				_mm512_inserti64x4(_mm512_castsi256_si512(vaddr4_5),
							vaddr6_7, 1);

			/* convert pa to dma_addr hdr/data */
			dma_addr0_3 = _mm512_unpackhi_epi64(vaddr0_3, vaddr0_3);
			dma_addr4_7 = _mm512_unpackhi_epi64(vaddr4_7, vaddr4_7);

			/* add headroom to pa values */
			dma_addr0_3 = _mm512_add_epi64(dma_addr0_3, hdr_room);
			dma_addr4_7 = _mm512_add_epi64(dma_addr4_7, hdr_room);

			/* flush desc with pa dma_addr */
			_mm512_store_si512((__m512i *)&rxdp->read, dma_addr0_3);
			_mm512_store_si512((__m512i *)&(rxdp + 4)->read, dma_addr4_7);
		}
	} else
#endif
	{
		struct rte_mbuf *mb0, *mb1, *mb2, *mb3;
		__m256i dma_addr0_1, dma_addr2_3;
		__m256i hdr_room = _mm256_set1_epi64x(RTE_PKTMBUF_HEADROOM);
		/* Initialize the mbufs in vector, process 4 mbufs in one loop */
		for (i = 0; i < RTE_I40E_RXQ_REARM_THRESH;
				i += 4, rxep += 4, rxdp += 4) {
			__m128i vaddr0, vaddr1, vaddr2, vaddr3;
			__m256i vaddr0_1, vaddr2_3;

			mb0 = rxep[0].mbuf;
			mb1 = rxep[1].mbuf;
			mb2 = rxep[2].mbuf;
			mb3 = rxep[3].mbuf;

			/* load buf_addr(lo 64bit) and buf_iova(hi 64bit) */
			RTE_BUILD_BUG_ON(offsetof(struct rte_mbuf, buf_iova) !=
					offsetof(struct rte_mbuf, buf_addr) + 8);
			vaddr0 = _mm_loadu_si128((__m128i *)&mb0->buf_addr);
			vaddr1 = _mm_loadu_si128((__m128i *)&mb1->buf_addr);
			vaddr2 = _mm_loadu_si128((__m128i *)&mb2->buf_addr);
			vaddr3 = _mm_loadu_si128((__m128i *)&mb3->buf_addr);

			/*
			 * merge 0 & 1, by casting 0 to 256-bit and inserting 1
			 * into the high lanes. Similarly for 2 & 3
			 */
			vaddr0_1 = _mm256_inserti128_si256(
					_mm256_castsi128_si256(vaddr0), vaddr1, 1);
			vaddr2_3 = _mm256_inserti128_si256(
					_mm256_castsi128_si256(vaddr2), vaddr3, 1);

			/* convert pa to dma_addr hdr/data */
			dma_addr0_1 = _mm256_unpackhi_epi64(vaddr0_1, vaddr0_1);
			dma_addr2_3 = _mm256_unpackhi_epi64(vaddr2_3, vaddr2_3);

			/* add headroom to pa values */
			dma_addr0_1 = _mm256_add_epi64(dma_addr0_1, hdr_room);
			dma_addr2_3 = _mm256_add_epi64(dma_addr2_3, hdr_room);

			/* flush desc with pa dma_addr */
			_mm256_store_si256((__m256i *)&rxdp->read, dma_addr0_1);
			_mm256_store_si256((__m256i *)&(rxdp + 2)->read, dma_addr2_3);
		}
	}

#endif

	rxq->rxrearm_start += RTE_I40E_RXQ_REARM_THRESH;
	if (rxq->rxrearm_start >= rxq->nb_rx_desc)
		rxq->rxrearm_start = 0;

	rxq->rxrearm_nb -= RTE_I40E_RXQ_REARM_THRESH;

	rx_id = (uint16_t)((rxq->rxrearm_start == 0) ?
			     (rxq->nb_rx_desc - 1) : (rxq->rxrearm_start - 1));

	/* Update the tail pointer on the NIC */
	I40E_PCI_REG_WC_WRITE(rxq->qrx_tail, rx_id);
}
#endif

#endif