DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2020 Intel Corporation
 */

#include <cryptodev_pmd.h>

#include "adf_transport_access_macros.h"
#include "icp_qat_fw.h"
#include "icp_qat_fw_la.h"

#include "qat_sym.h"
#include "qat_sym_pmd.h"
#include "qat_sym_session.h"
#include "qat_qp.h"

struct qat_sym_dp_ctx {
	struct qat_sym_session *session;
	uint32_t tail;
	uint32_t head;
	uint16_t cached_enqueue;
	uint16_t cached_dequeue;
};

static __rte_always_inline int32_t
qat_sym_dp_parse_data_vec(struct qat_qp *qp, struct icp_qat_fw_la_bulk_req *req,
		struct rte_crypto_vec *data, uint16_t n_data_vecs)
{
	struct qat_queue *tx_queue;
	struct qat_sym_op_cookie *cookie;
	struct qat_sgl *list;
	uint32_t i;
	uint32_t total_len;

	if (likely(n_data_vecs == 1)) {
		req->comn_mid.src_data_addr = req->comn_mid.dest_data_addr =
			data[0].iova;
		req->comn_mid.src_length = req->comn_mid.dst_length =
			data[0].len;
		return data[0].len;
	}

	if (n_data_vecs == 0 || n_data_vecs > QAT_SYM_SGL_MAX_NUMBER)
		return -1;

	total_len = 0;
	tx_queue = &qp->tx_q;

	ICP_QAT_FW_COMN_PTR_TYPE_SET(req->comn_hdr.comn_req_flags,
			QAT_COMN_PTR_TYPE_SGL);
	cookie = qp->op_cookies[tx_queue->tail >> tx_queue->trailz];
	list = (struct qat_sgl *)&cookie->qat_sgl_src;

	for (i = 0; i < n_data_vecs; i++) {
		list->buffers[i].len = data[i].len;
		list->buffers[i].resrvd = 0;
		list->buffers[i].addr = data[i].iova;
		if (total_len + data[i].len > UINT32_MAX) {
			QAT_DP_LOG(ERR, "Message too long");
			return -1;
		}
		total_len += data[i].len;
	}

	list->num_bufs = i;
	req->comn_mid.src_data_addr = req->comn_mid.dest_data_addr =
			cookie->qat_sgl_src_phys_addr;
	req->comn_mid.src_length = req->comn_mid.dst_length = 0;
	return total_len;
}

static __rte_always_inline void
set_cipher_iv(struct icp_qat_fw_la_cipher_req_params *cipher_param,
		struct rte_crypto_va_iova_ptr *iv_ptr, uint32_t iv_len,
		struct icp_qat_fw_la_bulk_req *qat_req)
{
	/* copy IV into request if it fits */
	if (iv_len <= sizeof(cipher_param->u.cipher_IV_array))
		rte_memcpy(cipher_param->u.cipher_IV_array, iv_ptr->va,
				iv_len);
	else {
		ICP_QAT_FW_LA_CIPH_IV_FLD_FLAG_SET(
				qat_req->comn_hdr.serv_specif_flags,
				ICP_QAT_FW_CIPH_IV_64BIT_PTR);
		cipher_param->u.s.cipher_IV_ptr = iv_ptr->iova;
	}
}

#define QAT_SYM_DP_IS_RESP_SUCCESS(resp) \
	(ICP_QAT_FW_COMN_STATUS_FLAG_OK == \
	ICP_QAT_FW_COMN_RESP_CRYPTO_STAT_GET(resp->comn_hdr.comn_status))

static __rte_always_inline void
qat_sym_dp_fill_vec_status(int32_t *sta, int status, uint32_t n)
{
	uint32_t i;

	for (i = 0; i < n; i++)
		sta[i] = status;
}

#define QAT_SYM_DP_GET_MAX_ENQ(q, c, n) \
	RTE_MIN((q->max_inflights - q->enqueued + q->dequeued - c), n)

static __rte_always_inline void
enqueue_one_cipher_job(struct qat_sym_session *ctx,
	struct icp_qat_fw_la_bulk_req *req,
	struct rte_crypto_va_iova_ptr *iv,
	union rte_crypto_sym_ofs ofs, uint32_t data_len)
{
	struct icp_qat_fw_la_cipher_req_params *cipher_param;

	cipher_param = (void *)&req->serv_specif_rqpars;

	/* cipher IV */
	set_cipher_iv(cipher_param, iv, ctx->cipher_iv.length, req);
	cipher_param->cipher_offset = ofs.ofs.cipher.head;
	cipher_param->cipher_length = data_len - ofs.ofs.cipher.head -
			ofs.ofs.cipher.tail;
}

static __rte_always_inline int
qat_sym_dp_enqueue_single_cipher(void *qp_data, uint8_t *drv_ctx,
	struct rte_crypto_vec *data, uint16_t n_data_vecs,
	union rte_crypto_sym_ofs ofs,
	struct rte_crypto_va_iova_ptr *iv,
	struct rte_crypto_va_iova_ptr *digest __rte_unused,
	struct rte_crypto_va_iova_ptr *aad __rte_unused,
	void *user_data)
{
	struct qat_qp *qp = qp_data;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
	struct qat_queue *tx_queue = &qp->tx_q;
	struct qat_sym_session *ctx = dp_ctx->session;
	struct icp_qat_fw_la_bulk_req *req;
	int32_t data_len;
	uint32_t tail = dp_ctx->tail;

	req = (struct icp_qat_fw_la_bulk_req *)(
		(uint8_t *)tx_queue->base_addr + tail);
	tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
	rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
	rte_prefetch0((uint8_t *)tx_queue->base_addr + tail);
	data_len = qat_sym_dp_parse_data_vec(qp, req, data, n_data_vecs);
	if (unlikely(data_len < 0))
		return -1;
	req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data;

	enqueue_one_cipher_job(ctx, req, iv, ofs, (uint32_t)data_len);

	dp_ctx->tail = tail;
	dp_ctx->cached_enqueue++;

	return 0;
}

static __rte_always_inline uint32_t
qat_sym_dp_enqueue_cipher_jobs(void *qp_data, uint8_t *drv_ctx,
	struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs,
	void *user_data[], int *status)
{
	struct qat_qp *qp = qp_data;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
	struct qat_queue *tx_queue = &qp->tx_q;
	struct qat_sym_session *ctx = dp_ctx->session;
	uint32_t i, n;
	uint32_t tail;
	struct icp_qat_fw_la_bulk_req *req;
	int32_t data_len;

	n = QAT_SYM_DP_GET_MAX_ENQ(qp, dp_ctx->cached_enqueue, vec->num);
	if (unlikely(n == 0)) {
		qat_sym_dp_fill_vec_status(vec->status, -1, vec->num);
		*status = 0;
		return 0;
	}

	tail = dp_ctx->tail;

	for (i = 0; i < n; i++) {
		req  = (struct icp_qat_fw_la_bulk_req *)(
			(uint8_t *)tx_queue->base_addr + tail);
		rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));

		data_len = qat_sym_dp_parse_data_vec(qp, req,
			vec->src_sgl[i].vec,
			vec->src_sgl[i].num);
		if (unlikely(data_len < 0))
			break;
		req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data[i];
		enqueue_one_cipher_job(ctx, req, &vec->iv[i], ofs,
			(uint32_t)data_len);
		tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
	}

	if (unlikely(i < n))
		qat_sym_dp_fill_vec_status(vec->status + i, -1, n - i);

	dp_ctx->tail = tail;
	dp_ctx->cached_enqueue += i;
	*status = 0;
	return i;
}

static __rte_always_inline void
enqueue_one_auth_job(struct qat_sym_session *ctx,
	struct icp_qat_fw_la_bulk_req *req,
	struct rte_crypto_va_iova_ptr *digest,
	struct rte_crypto_va_iova_ptr *auth_iv,
	union rte_crypto_sym_ofs ofs, uint32_t data_len)
{
	struct icp_qat_fw_la_cipher_req_params *cipher_param;
	struct icp_qat_fw_la_auth_req_params *auth_param;

	cipher_param = (void *)&req->serv_specif_rqpars;
	auth_param = (void *)((uint8_t *)cipher_param +
			ICP_QAT_FW_HASH_REQUEST_PARAMETERS_OFFSET);

	auth_param->auth_off = ofs.ofs.auth.head;
	auth_param->auth_len = data_len - ofs.ofs.auth.head -
			ofs.ofs.auth.tail;
	auth_param->auth_res_addr = digest->iova;

	switch (ctx->qat_hash_alg) {
	case ICP_QAT_HW_AUTH_ALGO_SNOW_3G_UIA2:
	case ICP_QAT_HW_AUTH_ALGO_KASUMI_F9:
	case ICP_QAT_HW_AUTH_ALGO_ZUC_3G_128_EIA3:
		auth_param->u1.aad_adr = auth_iv->iova;
		break;
	case ICP_QAT_HW_AUTH_ALGO_GALOIS_128:
	case ICP_QAT_HW_AUTH_ALGO_GALOIS_64:
		ICP_QAT_FW_LA_GCM_IV_LEN_FLAG_SET(
			req->comn_hdr.serv_specif_flags,
				ICP_QAT_FW_LA_GCM_IV_LEN_12_OCTETS);
		rte_memcpy(cipher_param->u.cipher_IV_array, auth_iv->va,
				ctx->auth_iv.length);
		break;
	default:
		break;
	}
}

static __rte_always_inline int
qat_sym_dp_enqueue_single_auth(void *qp_data, uint8_t *drv_ctx,
	struct rte_crypto_vec *data, uint16_t n_data_vecs,
	union rte_crypto_sym_ofs ofs,
	struct rte_crypto_va_iova_ptr *iv __rte_unused,
	struct rte_crypto_va_iova_ptr *digest,
	struct rte_crypto_va_iova_ptr *auth_iv,
	void *user_data)
{
	struct qat_qp *qp = qp_data;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
	struct qat_queue *tx_queue = &qp->tx_q;
	struct qat_sym_session *ctx = dp_ctx->session;
	struct icp_qat_fw_la_bulk_req *req;
	int32_t data_len;
	uint32_t tail = dp_ctx->tail;

	req = (struct icp_qat_fw_la_bulk_req *)(
		(uint8_t *)tx_queue->base_addr + tail);
	tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
	rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
	rte_prefetch0((uint8_t *)tx_queue->base_addr + tail);
	data_len = qat_sym_dp_parse_data_vec(qp, req, data, n_data_vecs);
	if (unlikely(data_len < 0))
		return -1;
	req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data;

	enqueue_one_auth_job(ctx, req, digest, auth_iv, ofs,
			(uint32_t)data_len);

	dp_ctx->tail = tail;
	dp_ctx->cached_enqueue++;

	return 0;
}

static __rte_always_inline uint32_t
qat_sym_dp_enqueue_auth_jobs(void *qp_data, uint8_t *drv_ctx,
	struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs,
	void *user_data[], int *status)
{
	struct qat_qp *qp = qp_data;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
	struct qat_queue *tx_queue = &qp->tx_q;
	struct qat_sym_session *ctx = dp_ctx->session;
	uint32_t i, n;
	uint32_t tail;
	struct icp_qat_fw_la_bulk_req *req;
	int32_t data_len;

	n = QAT_SYM_DP_GET_MAX_ENQ(qp, dp_ctx->cached_enqueue, vec->num);
	if (unlikely(n == 0)) {
		qat_sym_dp_fill_vec_status(vec->status, -1, vec->num);
		*status = 0;
		return 0;
	}

	tail = dp_ctx->tail;

	for (i = 0; i < n; i++) {
		req  = (struct icp_qat_fw_la_bulk_req *)(
			(uint8_t *)tx_queue->base_addr + tail);
		rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));

		data_len = qat_sym_dp_parse_data_vec(qp, req,
			vec->src_sgl[i].vec,
			vec->src_sgl[i].num);
		if (unlikely(data_len < 0))
			break;
		req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data[i];
		enqueue_one_auth_job(ctx, req, &vec->digest[i],
			&vec->auth_iv[i], ofs, (uint32_t)data_len);
		tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
	}

	if (unlikely(i < n))
		qat_sym_dp_fill_vec_status(vec->status + i, -1, n - i);

	dp_ctx->tail = tail;
	dp_ctx->cached_enqueue += i;
	*status = 0;
	return i;
}

static __rte_always_inline int
enqueue_one_chain_job(struct qat_sym_session *ctx,
	struct icp_qat_fw_la_bulk_req *req,
	struct rte_crypto_vec *data,
	uint16_t n_data_vecs,
	struct rte_crypto_va_iova_ptr *cipher_iv,
	struct rte_crypto_va_iova_ptr *digest,
	struct rte_crypto_va_iova_ptr *auth_iv,
	union rte_crypto_sym_ofs ofs, uint32_t data_len)
{
	struct icp_qat_fw_la_cipher_req_params *cipher_param;
	struct icp_qat_fw_la_auth_req_params *auth_param;
	rte_iova_t auth_iova_end;
	int32_t cipher_len, auth_len;

	cipher_param = (void *)&req->serv_specif_rqpars;
	auth_param = (void *)((uint8_t *)cipher_param +
			ICP_QAT_FW_HASH_REQUEST_PARAMETERS_OFFSET);

	cipher_len = data_len - ofs.ofs.cipher.head -
			ofs.ofs.cipher.tail;
	auth_len = data_len - ofs.ofs.auth.head - ofs.ofs.auth.tail;

	if (unlikely(cipher_len < 0 || auth_len < 0))
		return -1;

	cipher_param->cipher_offset = ofs.ofs.cipher.head;
	cipher_param->cipher_length = cipher_len;
	set_cipher_iv(cipher_param, cipher_iv, ctx->cipher_iv.length, req);

	auth_param->auth_off = ofs.ofs.auth.head;
	auth_param->auth_len = auth_len;
	auth_param->auth_res_addr = digest->iova;

	switch (ctx->qat_hash_alg) {
	case ICP_QAT_HW_AUTH_ALGO_SNOW_3G_UIA2:
	case ICP_QAT_HW_AUTH_ALGO_KASUMI_F9:
	case ICP_QAT_HW_AUTH_ALGO_ZUC_3G_128_EIA3:
		auth_param->u1.aad_adr = auth_iv->iova;
		break;
	case ICP_QAT_HW_AUTH_ALGO_GALOIS_128:
	case ICP_QAT_HW_AUTH_ALGO_GALOIS_64:
		break;
	default:
		break;
	}

	if (unlikely(n_data_vecs > 1)) {
		int auth_end_get = 0, i = n_data_vecs - 1;
		struct rte_crypto_vec *cvec = &data[0];
		uint32_t len;

		len = data_len - ofs.ofs.auth.tail;

		while (i >= 0 && len > 0) {
			if (cvec->len >= len) {
				auth_iova_end = cvec->iova + len;
				len = 0;
				auth_end_get = 1;
				break;
			}
			len -= cvec->len;
			i--;
			cvec++;
		}

		if (unlikely(auth_end_get == 0))
			return -1;
	} else
		auth_iova_end = data[0].iova + auth_param->auth_off +
			auth_param->auth_len;

	/* Then check if digest-encrypted conditions are met */
	if ((auth_param->auth_off + auth_param->auth_len <
		cipher_param->cipher_offset +
		cipher_param->cipher_length) &&
		(digest->iova == auth_iova_end)) {
		/* Handle partial digest encryption */
		if (cipher_param->cipher_offset +
				cipher_param->cipher_length <
				auth_param->auth_off +
				auth_param->auth_len +
				ctx->digest_length)
			req->comn_mid.dst_length =
				req->comn_mid.src_length =
				auth_param->auth_off +
				auth_param->auth_len +
				ctx->digest_length;
		struct icp_qat_fw_comn_req_hdr *header =
			&req->comn_hdr;
		ICP_QAT_FW_LA_DIGEST_IN_BUFFER_SET(
			header->serv_specif_flags,
			ICP_QAT_FW_LA_DIGEST_IN_BUFFER);
	}

	return 0;
}

static __rte_always_inline int
qat_sym_dp_enqueue_single_chain(void *qp_data, uint8_t *drv_ctx,
	struct rte_crypto_vec *data, uint16_t n_data_vecs,
	union rte_crypto_sym_ofs ofs,
	struct rte_crypto_va_iova_ptr *cipher_iv,
	struct rte_crypto_va_iova_ptr *digest,
	struct rte_crypto_va_iova_ptr *auth_iv,
	void *user_data)
{
	struct qat_qp *qp = qp_data;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
	struct qat_queue *tx_queue = &qp->tx_q;
	struct qat_sym_session *ctx = dp_ctx->session;
	struct icp_qat_fw_la_bulk_req *req;
	int32_t data_len;
	uint32_t tail = dp_ctx->tail;

	req = (struct icp_qat_fw_la_bulk_req *)(
		(uint8_t *)tx_queue->base_addr + tail);
	tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
	rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
	rte_prefetch0((uint8_t *)tx_queue->base_addr + tail);
	data_len = qat_sym_dp_parse_data_vec(qp, req, data, n_data_vecs);
	if (unlikely(data_len < 0))
		return -1;
	req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data;

	if (unlikely(enqueue_one_chain_job(ctx, req, data, n_data_vecs,
			cipher_iv, digest, auth_iv, ofs, (uint32_t)data_len)))
		return -1;

	dp_ctx->tail = tail;
	dp_ctx->cached_enqueue++;

	return 0;
}

static __rte_always_inline uint32_t
qat_sym_dp_enqueue_chain_jobs(void *qp_data, uint8_t *drv_ctx,
	struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs,
	void *user_data[], int *status)
{
	struct qat_qp *qp = qp_data;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
	struct qat_queue *tx_queue = &qp->tx_q;
	struct qat_sym_session *ctx = dp_ctx->session;
	uint32_t i, n;
	uint32_t tail;
	struct icp_qat_fw_la_bulk_req *req;
	int32_t data_len;

	n = QAT_SYM_DP_GET_MAX_ENQ(qp, dp_ctx->cached_enqueue, vec->num);
	if (unlikely(n == 0)) {
		qat_sym_dp_fill_vec_status(vec->status, -1, vec->num);
		*status = 0;
		return 0;
	}

	tail = dp_ctx->tail;

	for (i = 0; i < n; i++) {
		req  = (struct icp_qat_fw_la_bulk_req *)(
			(uint8_t *)tx_queue->base_addr + tail);
		rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));

		data_len = qat_sym_dp_parse_data_vec(qp, req,
			vec->src_sgl[i].vec,
			vec->src_sgl[i].num);
		if (unlikely(data_len < 0))
			break;
		req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data[i];
		if (unlikely(enqueue_one_chain_job(ctx, req,
			vec->src_sgl[i].vec, vec->src_sgl[i].num,
			&vec->iv[i], &vec->digest[i],
			&vec->auth_iv[i], ofs, (uint32_t)data_len)))
			break;

		tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
	}

	if (unlikely(i < n))
		qat_sym_dp_fill_vec_status(vec->status + i, -1, n - i);

	dp_ctx->tail = tail;
	dp_ctx->cached_enqueue += i;
	*status = 0;
	return i;
}

static __rte_always_inline void
enqueue_one_aead_job(struct qat_sym_session *ctx,
	struct icp_qat_fw_la_bulk_req *req,
	struct rte_crypto_va_iova_ptr *iv,
	struct rte_crypto_va_iova_ptr *digest,
	struct rte_crypto_va_iova_ptr *aad,
	union rte_crypto_sym_ofs ofs, uint32_t data_len)
{
	struct icp_qat_fw_la_cipher_req_params *cipher_param =
		(void *)&req->serv_specif_rqpars;
	struct icp_qat_fw_la_auth_req_params *auth_param =
		(void *)((uint8_t *)&req->serv_specif_rqpars +
		ICP_QAT_FW_HASH_REQUEST_PARAMETERS_OFFSET);
	uint8_t *aad_data;
	uint8_t aad_ccm_real_len;
	uint8_t aad_len_field_sz;
	uint32_t msg_len_be;
	rte_iova_t aad_iova = 0;
	uint8_t q;

	/* CPM 1.7 uses single pass to treat AEAD as cipher operation */
	if (ctx->is_single_pass) {
		enqueue_one_cipher_job(ctx, req, iv, ofs, data_len);
		cipher_param->spc_aad_addr = aad->iova;
		cipher_param->spc_auth_res_addr = digest->iova;
		return;
	}

	switch (ctx->qat_hash_alg) {
	case ICP_QAT_HW_AUTH_ALGO_GALOIS_128:
	case ICP_QAT_HW_AUTH_ALGO_GALOIS_64:
		ICP_QAT_FW_LA_GCM_IV_LEN_FLAG_SET(
			req->comn_hdr.serv_specif_flags,
				ICP_QAT_FW_LA_GCM_IV_LEN_12_OCTETS);
		rte_memcpy(cipher_param->u.cipher_IV_array, iv->va,
				ctx->cipher_iv.length);
		aad_iova = aad->iova;
		break;
	case ICP_QAT_HW_AUTH_ALGO_AES_CBC_MAC:
		aad_data = aad->va;
		aad_iova = aad->iova;
		aad_ccm_real_len = 0;
		aad_len_field_sz = 0;
		msg_len_be = rte_bswap32((uint32_t)data_len -
				ofs.ofs.cipher.head);

		if (ctx->aad_len > ICP_QAT_HW_CCM_AAD_DATA_OFFSET) {
			aad_len_field_sz = ICP_QAT_HW_CCM_AAD_LEN_INFO;
			aad_ccm_real_len = ctx->aad_len -
				ICP_QAT_HW_CCM_AAD_B0_LEN -
				ICP_QAT_HW_CCM_AAD_LEN_INFO;
		} else {
			aad_data = iv->va;
			aad_iova = iv->iova;
		}

		q = ICP_QAT_HW_CCM_NQ_CONST - ctx->cipher_iv.length;
		aad_data[0] = ICP_QAT_HW_CCM_BUILD_B0_FLAGS(
			aad_len_field_sz, ctx->digest_length, q);
		if (q > ICP_QAT_HW_CCM_MSG_LEN_MAX_FIELD_SIZE) {
			memcpy(aad_data	+ ctx->cipher_iv.length +
				ICP_QAT_HW_CCM_NONCE_OFFSET + (q -
				ICP_QAT_HW_CCM_MSG_LEN_MAX_FIELD_SIZE),
				(uint8_t *)&msg_len_be,
				ICP_QAT_HW_CCM_MSG_LEN_MAX_FIELD_SIZE);
		} else {
			memcpy(aad_data	+ ctx->cipher_iv.length +
				ICP_QAT_HW_CCM_NONCE_OFFSET,
				(uint8_t *)&msg_len_be +
				(ICP_QAT_HW_CCM_MSG_LEN_MAX_FIELD_SIZE
				- q), q);
		}

		if (aad_len_field_sz > 0) {
			*(uint16_t *)&aad_data[ICP_QAT_HW_CCM_AAD_B0_LEN] =
				rte_bswap16(aad_ccm_real_len);

			if ((aad_ccm_real_len + aad_len_field_sz)
				% ICP_QAT_HW_CCM_AAD_B0_LEN) {
				uint8_t pad_len = 0;
				uint8_t pad_idx = 0;

				pad_len = ICP_QAT_HW_CCM_AAD_B0_LEN -
					((aad_ccm_real_len +
					aad_len_field_sz) %
					ICP_QAT_HW_CCM_AAD_B0_LEN);
				pad_idx = ICP_QAT_HW_CCM_AAD_B0_LEN +
					aad_ccm_real_len +
					aad_len_field_sz;
				memset(&aad_data[pad_idx], 0, pad_len);
			}
		}

		rte_memcpy(((uint8_t *)cipher_param->u.cipher_IV_array)
			+ ICP_QAT_HW_CCM_NONCE_OFFSET,
			(uint8_t *)iv->va +
			ICP_QAT_HW_CCM_NONCE_OFFSET, ctx->cipher_iv.length);
		*(uint8_t *)&cipher_param->u.cipher_IV_array[0] =
			q - ICP_QAT_HW_CCM_NONCE_OFFSET;

		rte_memcpy((uint8_t *)aad->va +
				ICP_QAT_HW_CCM_NONCE_OFFSET,
			(uint8_t *)iv->va + ICP_QAT_HW_CCM_NONCE_OFFSET,
			ctx->cipher_iv.length);
		break;
	default:
		break;
	}

	cipher_param->cipher_offset = ofs.ofs.cipher.head;
	cipher_param->cipher_length = data_len - ofs.ofs.cipher.head -
			ofs.ofs.cipher.tail;
	auth_param->auth_off = ofs.ofs.cipher.head;
	auth_param->auth_len = cipher_param->cipher_length;
	auth_param->auth_res_addr = digest->iova;
	auth_param->u1.aad_adr = aad_iova;
}

static __rte_always_inline int
qat_sym_dp_enqueue_single_aead(void *qp_data, uint8_t *drv_ctx,
	struct rte_crypto_vec *data, uint16_t n_data_vecs,
	union rte_crypto_sym_ofs ofs,
	struct rte_crypto_va_iova_ptr *iv,
	struct rte_crypto_va_iova_ptr *digest,
	struct rte_crypto_va_iova_ptr *aad,
	void *user_data)
{
	struct qat_qp *qp = qp_data;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
	struct qat_queue *tx_queue = &qp->tx_q;
	struct qat_sym_session *ctx = dp_ctx->session;
	struct icp_qat_fw_la_bulk_req *req;
	int32_t data_len;
	uint32_t tail = dp_ctx->tail;

	req = (struct icp_qat_fw_la_bulk_req *)(
		(uint8_t *)tx_queue->base_addr + tail);
	tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
	rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));
	rte_prefetch0((uint8_t *)tx_queue->base_addr + tail);
	data_len = qat_sym_dp_parse_data_vec(qp, req, data, n_data_vecs);
	if (unlikely(data_len < 0))
		return -1;
	req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data;

	enqueue_one_aead_job(ctx, req, iv, digest, aad, ofs,
		(uint32_t)data_len);

	dp_ctx->tail = tail;
	dp_ctx->cached_enqueue++;

	return 0;
}

static __rte_always_inline uint32_t
qat_sym_dp_enqueue_aead_jobs(void *qp_data, uint8_t *drv_ctx,
	struct rte_crypto_sym_vec *vec, union rte_crypto_sym_ofs ofs,
	void *user_data[], int *status)
{
	struct qat_qp *qp = qp_data;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
	struct qat_queue *tx_queue = &qp->tx_q;
	struct qat_sym_session *ctx = dp_ctx->session;
	uint32_t i, n;
	uint32_t tail;
	struct icp_qat_fw_la_bulk_req *req;
	int32_t data_len;

	n = QAT_SYM_DP_GET_MAX_ENQ(qp, dp_ctx->cached_enqueue, vec->num);
	if (unlikely(n == 0)) {
		qat_sym_dp_fill_vec_status(vec->status, -1, vec->num);
		*status = 0;
		return 0;
	}

	tail = dp_ctx->tail;

	for (i = 0; i < n; i++) {
		req  = (struct icp_qat_fw_la_bulk_req *)(
			(uint8_t *)tx_queue->base_addr + tail);
		rte_mov128((uint8_t *)req, (const uint8_t *)&(ctx->fw_req));

		data_len = qat_sym_dp_parse_data_vec(qp, req,
			vec->src_sgl[i].vec,
			vec->src_sgl[i].num);
		if (unlikely(data_len < 0))
			break;
		req->comn_mid.opaque_data = (uint64_t)(uintptr_t)user_data[i];
		enqueue_one_aead_job(ctx, req, &vec->iv[i], &vec->digest[i],
			&vec->aad[i], ofs, (uint32_t)data_len);
		tail = (tail + tx_queue->msg_size) & tx_queue->modulo_mask;
	}

	if (unlikely(i < n))
		qat_sym_dp_fill_vec_status(vec->status + i, -1, n - i);

	dp_ctx->tail = tail;
	dp_ctx->cached_enqueue += i;
	*status = 0;
	return i;
}

static __rte_always_inline uint32_t
qat_sym_dp_dequeue_burst(void *qp_data, uint8_t *drv_ctx,
	rte_cryptodev_raw_get_dequeue_count_t get_dequeue_count,
	uint32_t max_nb_to_dequeue,
	rte_cryptodev_raw_post_dequeue_t post_dequeue,
	void **out_user_data, uint8_t is_user_data_array,
	uint32_t *n_success_jobs, int *return_status)
{
	struct qat_qp *qp = qp_data;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
	struct qat_queue *rx_queue = &qp->rx_q;
	struct icp_qat_fw_comn_resp *resp;
	void *resp_opaque;
	uint32_t i, n, inflight;
	uint32_t head;
	uint8_t status;

	*n_success_jobs = 0;
	*return_status = 0;
	head = dp_ctx->head;

	inflight = qp->enqueued - qp->dequeued;
	if (unlikely(inflight == 0))
		return 0;

	resp = (struct icp_qat_fw_comn_resp *)((uint8_t *)rx_queue->base_addr +
			head);
	/* no operation ready */
	if (unlikely(*(uint32_t *)resp == ADF_RING_EMPTY_SIG))
		return 0;

	resp_opaque = (void *)(uintptr_t)resp->opaque_data;
	/* get the dequeue count */
	if (get_dequeue_count) {
		n = get_dequeue_count(resp_opaque);
		if (unlikely(n == 0))
			return 0;
	} else {
		if (unlikely(max_nb_to_dequeue == 0))
			return 0;
		n = max_nb_to_dequeue;
	}

	out_user_data[0] = resp_opaque;
	status = QAT_SYM_DP_IS_RESP_SUCCESS(resp);
	post_dequeue(resp_opaque, 0, status);
	*n_success_jobs += status;

	head = (head + rx_queue->msg_size) & rx_queue->modulo_mask;

	/* we already finished dequeue when n == 1 */
	if (unlikely(n == 1)) {
		i = 1;
		goto end_deq;
	}

	if (is_user_data_array) {
		for (i = 1; i < n; i++) {
			resp = (struct icp_qat_fw_comn_resp *)(
				(uint8_t *)rx_queue->base_addr + head);
			if (unlikely(*(uint32_t *)resp ==
					ADF_RING_EMPTY_SIG))
				goto end_deq;
			out_user_data[i] = (void *)(uintptr_t)resp->opaque_data;
			status = QAT_SYM_DP_IS_RESP_SUCCESS(resp);
			*n_success_jobs += status;
			post_dequeue(out_user_data[i], i, status);
			head = (head + rx_queue->msg_size) &
					rx_queue->modulo_mask;
		}

		goto end_deq;
	}

	/* opaque is not array */
	for (i = 1; i < n; i++) {
		resp = (struct icp_qat_fw_comn_resp *)(
			(uint8_t *)rx_queue->base_addr + head);
		status = QAT_SYM_DP_IS_RESP_SUCCESS(resp);
		if (unlikely(*(uint32_t *)resp == ADF_RING_EMPTY_SIG))
			goto end_deq;
		head = (head + rx_queue->msg_size) &
				rx_queue->modulo_mask;
		post_dequeue(resp_opaque, i, status);
		*n_success_jobs += status;
	}

end_deq:
	dp_ctx->head = head;
	dp_ctx->cached_dequeue += i;
	return i;
}

static __rte_always_inline void *
qat_sym_dp_dequeue(void *qp_data, uint8_t *drv_ctx, int *dequeue_status,
		enum rte_crypto_op_status *op_status)
{
	struct qat_qp *qp = qp_data;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;
	struct qat_queue *rx_queue = &qp->rx_q;
	register struct icp_qat_fw_comn_resp *resp;

	resp = (struct icp_qat_fw_comn_resp *)((uint8_t *)rx_queue->base_addr +
			dp_ctx->head);

	if (unlikely(*(uint32_t *)resp == ADF_RING_EMPTY_SIG))
		return NULL;

	dp_ctx->head = (dp_ctx->head + rx_queue->msg_size) &
			rx_queue->modulo_mask;
	dp_ctx->cached_dequeue++;

	*op_status = QAT_SYM_DP_IS_RESP_SUCCESS(resp) ?
			RTE_CRYPTO_OP_STATUS_SUCCESS :
			RTE_CRYPTO_OP_STATUS_AUTH_FAILED;
	*dequeue_status = 0;
	return (void *)(uintptr_t)resp->opaque_data;
}

static __rte_always_inline int
qat_sym_dp_kick_tail(void *qp_data, uint8_t *drv_ctx, uint32_t n)
{
	struct qat_qp *qp = qp_data;
	struct qat_queue *tx_queue = &qp->tx_q;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;

	if (unlikely(dp_ctx->cached_enqueue != n))
		return -1;

	qp->enqueued += n;
	qp->stats.enqueued_count += n;

	tx_queue->tail = dp_ctx->tail;

	WRITE_CSR_RING_TAIL(qp->mmap_bar_addr,
			tx_queue->hw_bundle_number,
			tx_queue->hw_queue_number, tx_queue->tail);
	tx_queue->csr_tail = tx_queue->tail;
	dp_ctx->cached_enqueue = 0;

	return 0;
}

static __rte_always_inline int
qat_sym_dp_update_head(void *qp_data, uint8_t *drv_ctx, uint32_t n)
{
	struct qat_qp *qp = qp_data;
	struct qat_queue *rx_queue = &qp->rx_q;
	struct qat_sym_dp_ctx *dp_ctx = (void *)drv_ctx;

	if (unlikely(dp_ctx->cached_dequeue != n))
		return -1;

	rx_queue->head = dp_ctx->head;
	rx_queue->nb_processed_responses += n;
	qp->dequeued += n;
	qp->stats.dequeued_count += n;
	if (rx_queue->nb_processed_responses > QAT_CSR_HEAD_WRITE_THRESH) {
		uint32_t old_head, new_head;
		uint32_t max_head;

		old_head = rx_queue->csr_head;
		new_head = rx_queue->head;
		max_head = qp->nb_descriptors * rx_queue->msg_size;

		/* write out free descriptors */
		void *cur_desc = (uint8_t *)rx_queue->base_addr + old_head;

		if (new_head < old_head) {
			memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE,
					max_head - old_head);
			memset(rx_queue->base_addr, ADF_RING_EMPTY_SIG_BYTE,
					new_head);
		} else {
			memset(cur_desc, ADF_RING_EMPTY_SIG_BYTE, new_head -
					old_head);
		}
		rx_queue->nb_processed_responses = 0;
		rx_queue->csr_head = new_head;

		/* write current head to CSR */
		WRITE_CSR_RING_HEAD(qp->mmap_bar_addr,
			rx_queue->hw_bundle_number, rx_queue->hw_queue_number,
			new_head);
	}

	dp_ctx->cached_dequeue = 0;
	return 0;
}

int
qat_sym_configure_dp_ctx(struct rte_cryptodev *dev, uint16_t qp_id,
	struct rte_crypto_raw_dp_ctx *raw_dp_ctx,
	enum rte_crypto_op_sess_type sess_type,
	union rte_cryptodev_session_ctx session_ctx, uint8_t is_update)
{
	struct qat_qp *qp;
	struct qat_sym_session *ctx;
	struct qat_sym_dp_ctx *dp_ctx;

	qp = dev->data->queue_pairs[qp_id];
	dp_ctx = (struct qat_sym_dp_ctx *)raw_dp_ctx->drv_ctx_data;

	if (!is_update) {
		memset(raw_dp_ctx, 0, sizeof(*raw_dp_ctx) +
				sizeof(struct qat_sym_dp_ctx));
		raw_dp_ctx->qp_data = dev->data->queue_pairs[qp_id];
		dp_ctx->tail = qp->tx_q.tail;
		dp_ctx->head = qp->rx_q.head;
		dp_ctx->cached_enqueue = dp_ctx->cached_dequeue = 0;
	}

	if (sess_type != RTE_CRYPTO_OP_WITH_SESSION)
		return -EINVAL;

	ctx = (struct qat_sym_session *)get_sym_session_private_data(
			session_ctx.crypto_sess, qat_sym_driver_id);

	dp_ctx->session = ctx;

	raw_dp_ctx->enqueue_done = qat_sym_dp_kick_tail;
	raw_dp_ctx->dequeue_burst = qat_sym_dp_dequeue_burst;
	raw_dp_ctx->dequeue = qat_sym_dp_dequeue;
	raw_dp_ctx->dequeue_done = qat_sym_dp_update_head;

	if ((ctx->qat_cmd == ICP_QAT_FW_LA_CMD_HASH_CIPHER ||
			ctx->qat_cmd == ICP_QAT_FW_LA_CMD_CIPHER_HASH) &&
			!ctx->is_gmac) {
		/* AES-GCM or AES-CCM */
		if (ctx->qat_hash_alg == ICP_QAT_HW_AUTH_ALGO_GALOIS_128 ||
			ctx->qat_hash_alg == ICP_QAT_HW_AUTH_ALGO_GALOIS_64 ||
			(ctx->qat_cipher_alg == ICP_QAT_HW_CIPHER_ALGO_AES128
			&& ctx->qat_mode == ICP_QAT_HW_CIPHER_CTR_MODE
			&& ctx->qat_hash_alg ==
					ICP_QAT_HW_AUTH_ALGO_AES_CBC_MAC)) {
			raw_dp_ctx->enqueue_burst =
					qat_sym_dp_enqueue_aead_jobs;
			raw_dp_ctx->enqueue = qat_sym_dp_enqueue_single_aead;
		} else {
			raw_dp_ctx->enqueue_burst =
					qat_sym_dp_enqueue_chain_jobs;
			raw_dp_ctx->enqueue = qat_sym_dp_enqueue_single_chain;
		}
	} else if (ctx->qat_cmd == ICP_QAT_FW_LA_CMD_AUTH || ctx->is_gmac) {
		raw_dp_ctx->enqueue_burst = qat_sym_dp_enqueue_auth_jobs;
		raw_dp_ctx->enqueue = qat_sym_dp_enqueue_single_auth;
	} else if (ctx->qat_cmd == ICP_QAT_FW_LA_CMD_CIPHER) {
		if (ctx->qat_mode == ICP_QAT_HW_CIPHER_AEAD_MODE ||
			ctx->qat_cipher_alg ==
				ICP_QAT_HW_CIPHER_ALGO_CHACHA20_POLY1305) {
			raw_dp_ctx->enqueue_burst =
					qat_sym_dp_enqueue_aead_jobs;
			raw_dp_ctx->enqueue = qat_sym_dp_enqueue_single_aead;
		} else {
			raw_dp_ctx->enqueue_burst =
					qat_sym_dp_enqueue_cipher_jobs;
			raw_dp_ctx->enqueue = qat_sym_dp_enqueue_single_cipher;
		}
	} else
		return -1;

	return 0;
}

int
qat_sym_get_dp_ctx_size(__rte_unused struct rte_cryptodev *dev)
{
	return sizeof(struct qat_sym_dp_ctx);
}