DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2018 Cavium, Inc
 */

#ifndef _CPT_HW_TYPES_H_
#define _CPT_HW_TYPES_H_

#include <rte_byteorder.h>

/*
 * This file defines HRM specific structs.
 *
 */

#define CPT_VF_INTR_MBOX_MASK   (1<<0)
#define CPT_VF_INTR_DOVF_MASK   (1<<1)
#define CPT_VF_INTR_IRDE_MASK   (1<<2)
#define CPT_VF_INTR_NWRP_MASK   (1<<3)
#define CPT_VF_INTR_SWERR_MASK  (1<<4)
#define CPT_VF_INTR_HWERR_MASK  (1<<5)
#define CPT_VF_INTR_FAULT_MASK  (1<<6)

#define CPT_INST_SIZE           (64)
#define CPT_NEXT_CHUNK_PTR_SIZE (8)

/*
 * CPT_INST_S software command definitions
 * Words EI (0-3)
 */
typedef union {
	uint64_t u64;
	struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
		struct {
			uint8_t minor;
			uint8_t major;
		} opcode;
		uint16_t param1;
		uint16_t param2;
		uint16_t dlen;
#else
		uint16_t dlen;
		uint16_t param2;
		uint16_t param1;
		struct {
			uint8_t major;
			uint8_t minor;
		} opcode;
#endif
	} s;
} vq_cmd_word0_t;

typedef union {
	uint64_t u64;
	struct {
#if RTE_BYTE_ORDER == RTE_BIG_ENDIAN
		uint64_t grp	: 3;
		uint64_t cptr	: 61;
#else
		uint64_t cptr	: 61;
		uint64_t grp	: 3;
#endif
	} s;
} vq_cmd_word3_t;

typedef struct cpt_vq_command {
	vq_cmd_word0_t cmd;
	uint64_t dptr;
	uint64_t rptr;
	vq_cmd_word3_t cptr;
} cpt_vq_cmd_t;

/**
 * Structure cpt_inst_s
 *
 * CPT Instruction Structure
 * This structure specifies the instruction layout.
 * Instructions are stored in memory as little-endian unless
 * CPT()_PF_Q()_CTL[INST_BE] is set.
 */
typedef union cpt_inst_s {
	uint64_t u[8];
	struct cpt_inst_s_8s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t reserved_17_63        : 47;
		/* [ 16: 16] Done interrupt.
		 * 0 = No interrupts related to this instruction.
		 * 1 = When the instruction completes,CPT()_VQ()_DONE[DONE]
		 * will be incremented, and based on the rules described
		 * there an interrupt may occur.
		 */
		uint64_t doneint               : 1;
		uint64_t reserved_0_15         : 16;
#else /* Word 0 - Little Endian */
		uint64_t reserved_0_15         : 16;
		uint64_t doneint               : 1;
		uint64_t reserved_17_63        : 47;
#endif /* Word 0 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 1 - Big Endian */
		/* [127: 64] Result IOVA.
		 * If nonzero, specifies where to write CPT_RES_S.
		 * If zero, no result structure will be written.
		 * Address must be 16-byte aligned.
		 *
		 * Bits <63:49> are ignored by hardware; software should
		 * use a sign-extended bit <48> for forward compatibility.
		 */
		uint64_t res_addr              : 64;
#else /* Word 1 - Little Endian */
		uint64_t res_addr              : 64;
#endif /* Word 1 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 2 - Big Endian */
		uint64_t reserved_172_191      : 20;
		/* [171:162] If [WQ_PTR] is nonzero, the SSO guest-group to
		 * use when CPT submits work to SSO.
		 * For the SSO to not discard the add-work request, FPA_PF_MAP()
		 * must map [GRP] and CPT()_PF_Q()_GMCTL[GMID] as valid.
		 */
		uint64_t grp                   : 10;
		/* [161:160] If [WQ_PTR] is nonzero, the SSO tag type to use
		 * when CPT submits work to SSO.
		 */
		uint64_t tt                    : 2;
		/* [159:128] If [WQ_PTR] is nonzero, the SSO tag to use when
		 * CPT submits work to SSO.
		 */
		uint64_t tag                   : 32;
#else /* Word 2 - Little Endian */
		uint64_t tag                   : 32;
		uint64_t tt                    : 2;
		uint64_t grp                   : 10;
		uint64_t reserved_172_191      : 20;
#endif /* Word 2 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 3 - Big Endian */
		/** [255:192] If [WQ_PTR] is nonzero, it is a pointer to a
		 * work-queue entry that CPT submits work to SSO after all
		 * context, output data, and result write operations are
		 * visible to other CNXXXX units and the cores.
		 * Bits <2:0> must be zero.
		 * Bits <63:49> are ignored by hardware; software should use a
		 * sign-extended bit <48> for forward compatibility.
		 * Internal:Bits <63:49>, <2:0> are ignored by hardware,
		 * treated as always 0x0.
		 **/
		uint64_t wq_ptr                : 64;
#else /* Word 3 - Little Endian */
		uint64_t wq_ptr                : 64;
#endif /* Word 3 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 4 - Big Endian */
		union {
			/** [319:256] Engine instruction word 0. Passed to the
			 * AE/SE.
			 **/
			uint64_t ei0                   : 64;
			vq_cmd_word0_t vq_cmd_w0;
		};
#else /* Word 4 - Little Endian */
		union {
			uint64_t ei0                   : 64;
			vq_cmd_word0_t vq_cmd_w0;
		};
#endif /* Word 4 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 5 - Big Endian */
		union {
			/** [383:320] Engine instruction word 1. Passed to the
			 * AE/SE.
			 **/
			uint64_t ei1                   : 64;
			uint64_t dptr;
		};
#else /* Word 5 - Little Endian */
		union {
			uint64_t ei1                   : 64;
			uint64_t dptr;
		};
#endif /* Word 5 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 6 - Big Endian */
		union {
			/** [447:384] Engine instruction word 2. Passed to the
			 * AE/SE.
			 **/
			uint64_t ei2                   : 64;
			uint64_t rptr;
		};
#else /* Word 6 - Little Endian */
		union {
			uint64_t ei2                   : 64;
			uint64_t rptr;
		};
#endif /* Word 6 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 7 - Big Endian */
		union {
			/** [511:448] Engine instruction word 3. Passed to the
			 * AE/SE.
			 **/
			uint64_t ei3                   : 64;
			vq_cmd_word3_t vq_cmd_w3;
		};
#else /* Word 7 - Little Endian */
		union {
			uint64_t ei3                   : 64;
			vq_cmd_word3_t vq_cmd_w3;
		};
#endif /* Word 7 - End */
	} s8x;
	struct cpt_inst_s_9s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t nixtx_addr            : 60;
		uint64_t doneint               : 1;
		uint64_t nixtxl                : 3;
#else /* Word 0 - Little Endian */
		uint64_t nixtxl                : 3;
		uint64_t doneint               : 1;
		uint64_t nixtx_addr            : 60;
#endif /* Word 0 - End */
		uint64_t res_addr;
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 2 - Big Endian */
		uint64_t rvu_pf_func           : 16;
		uint64_t reserved_172_175      : 4;
		uint64_t grp                   : 10;
		uint64_t tt                    : 2;
		uint64_t tag                   : 32;
#else /* Word 2 - Little Endian */
		uint64_t tag                   : 32;
		uint64_t tt                    : 2;
		uint64_t grp                   : 10;
		uint64_t reserved_172_175      : 4;
		uint64_t rvu_pf_func           : 16;
#endif /* Word 2 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 3 - Big Endian */
		uint64_t wq_ptr                : 61;
		uint64_t reserved_194_193      : 2;
		uint64_t qord                  : 1;
#else /* Word 3 - Little Endian */
		uint64_t qord                  : 1;
		uint64_t reserved_194_193      : 2;
		uint64_t wq_ptr                : 61;
#endif /* Word 3 - End */
		uint64_t ei0;
		uint64_t ei1;
		uint64_t ei2;
		uint64_t ei3;
	} s9x;
} cpt_inst_s_t;

/**
 * Structure cpt_res_s
 *
 * CPT Result Structure
 * The CPT coprocessor writes the result structure after it completes a
 * CPT_INST_S instruction. The result structure is exactly 16 bytes, and each
 * instruction completion produces exactly one result structure.
 *
 * This structure is stored in memory as little-endian unless
 * CPT()_PF_Q()_CTL[INST_BE] is set.
 */
typedef union cpt_res_s {
	uint64_t u[2];
	struct cpt_res_s_8s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t reserved_17_63        : 47;
		/** [ 16: 16] Done interrupt. This bit is copied from the
		 * corresponding instruction's CPT_INST_S[DONEINT].
		 **/
		uint64_t doneint               : 1;
		uint64_t reserved_8_15         : 8;
		/** [  7:  0] Indicates completion/error status of the CPT
		 * coprocessor for the associated instruction, as enumerated by
		 * CPT_COMP_E. Core software may write the memory location
		 * containing [COMPCODE] to 0x0 before ringing the doorbell, and
		 * then poll for completion by checking for a nonzero value.
		 *
		 * Once the core observes a nonzero [COMPCODE] value in this
		 * case, the CPT coprocessor will have also completed L2/DRAM
		 * write operations.
		 **/
		uint64_t compcode              : 8;
#else /* Word 0 - Little Endian */
		uint64_t compcode              : 8;
		uint64_t reserved_8_15         : 8;
		uint64_t doneint               : 1;
		uint64_t reserved_17_63        : 47;
#endif /* Word 0 - End */
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 1 - Big Endian */
		uint64_t reserved_64_127       : 64;
#else /* Word 1 - Little Endian */
		uint64_t reserved_64_127       : 64;
#endif /* Word 1 - End */
	} s8x;
	struct cpt_res_s_9s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t reserved_17_63:47;
		uint64_t doneint:1;
		uint64_t uc_compcode:8;
		uint64_t compcode:8;
#else /* Word 0 - Little Endian */
		uint64_t compcode:8;
		uint64_t uc_compcode:8;
		uint64_t doneint:1;
		uint64_t reserved_17_63:47;
#endif /* Word 0 - End */
		uint64_t reserved_64_127;
	} s9x;
} cpt_res_s_t;

/**
 * Register (NCB) cpt#_vq#_ctl
 *
 * CPT VF Queue Control Registers
 * This register configures queues. This register should be changed (other than
 * clearing [ENA]) only when quiescent (see CPT()_VQ()_INPROG[INFLIGHT]).
 */
typedef union {
	uint64_t u;
	struct cptx_vqx_ctl_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t reserved_1_63         : 63;
		/** [  0:  0](R/W/H) Enables the logical instruction queue.
		 * See also CPT()_PF_Q()_CTL[CONT_ERR] and
		 * CPT()_VQ()_INPROG[INFLIGHT].
		 * 1 = Queue is enabled.
		 * 0 = Queue is disabled.
		 **/
		uint64_t ena                   : 1;
#else /* Word 0 - Little Endian */
		uint64_t ena                   : 1;
		uint64_t reserved_1_63         : 63;
#endif /* Word 0 - End */
	} s;
} cptx_vqx_ctl_t;

/**
 * Register (NCB) cpt#_vq#_done
 *
 * CPT Queue Done Count Registers
 * These registers contain the per-queue instruction done count.
 */
typedef union {
	uint64_t u;
	struct cptx_vqx_done_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t reserved_20_63        : 44;
		/** [ 19:  0](R/W/H) Done count. When CPT_INST_S[DONEINT] set
		 * and that instruction completes,CPT()_VQ()_DONE[DONE] is
		 * incremented when the instruction finishes. Write to this
		 * field are for diagnostic use only; instead software writes
		 * CPT()_VQ()_DONE_ACK with the number of decrements for this
		 * field.
		 *
		 * Interrupts are sent as follows:
		 *
		 * When CPT()_VQ()_DONE[DONE] = 0, then no results are pending,
		 * the interrupt coalescing timer is held to zero, and an
		 * interrupt is not sent.
		 *
		 * When CPT()_VQ()_DONE[DONE] != 0, then the interrupt
		 * coalescing timer counts. If the counter is >= CPT()_VQ()_DONE
		 * _WAIT[TIME_WAIT]*1024, or CPT()_VQ()_DONE[DONE] >= CPT()_VQ()
		 * _DONE_WAIT[NUM_WAIT], i.e. enough time has passed or enough
		 * results have arrived, then the interrupt is sent.  Otherwise,
		 * it is not sent due to coalescing.
		 *
		 * When CPT()_VQ()_DONE_ACK is written (or CPT()_VQ()_DONE is
		 * written but this is not typical), the interrupt coalescing
		 * timer restarts.  Note after decrementing this interrupt
		 * equation is recomputed, for example if CPT()_VQ()_DONE[DONE]
		 * >= CPT()_VQ()_DONE_WAIT[NUM_WAIT] and because the timer is
		 * zero, the interrupt will be resent immediately.  (This covers
		 * the race case between software acknowledging an interrupt and
		 * a result returning.)
		 *
		 * When CPT()_VQ()_DONE_ENA_W1S[DONE] = 0, interrupts are not
		 * sent, but the counting described above still occurs.
		 *
		 * Since CPT instructions complete out-of-order, if software is
		 * using completion interrupts the suggested scheme is to
		 * request a DONEINT on each request, and when an interrupt
		 * arrives perform a "greedy" scan for completions; even if a
		 * later command is acknowledged first this will not result in
		 * missing a completion.
		 *
		 * Software is responsible for making sure [DONE] does not
		 * overflow; for example by insuring there are not more than
		 * 2^20-1 instructions in flight that may request interrupts.
		 **/
		uint64_t done                  : 20;
#else /* Word 0 - Little Endian */
		uint64_t done                  : 20;
		uint64_t reserved_20_63        : 44;
#endif /* Word 0 - End */
	} s;
} cptx_vqx_done_t;

/**
 * Register (NCB) cpt#_vq#_done_ack
 *
 * CPT Queue Done Count Ack Registers
 * This register is written by software to acknowledge interrupts.
 */
typedef union {
	uint64_t u;
	struct cptx_vqx_done_ack_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t reserved_20_63        : 44;
		/** [ 19:  0](R/W/H) Number of decrements to CPT()_VQ()_DONE
		 * [DONE]. Reads CPT()_VQ()_DONE[DONE].
		 *
		 * Written by software to acknowledge interrupts. If CPT()_VQ()_
		 * DONE[DONE] is still nonzero the interrupt will be re-sent if
		 * the conditions described in CPT()_VQ()_DONE[DONE] are
		 * satisfied.
		 **/
		uint64_t done_ack              : 20;
#else /* Word 0 - Little Endian */
		uint64_t done_ack              : 20;
		uint64_t reserved_20_63        : 44;
#endif /* Word 0 - End */
	} s;
} cptx_vqx_done_ack_t;

/**
 * Register (NCB) cpt#_vq#_done_wait
 *
 * CPT Queue Done Interrupt Coalescing Wait Registers
 * Specifies the per queue interrupt coalescing settings.
 */
typedef union {
	uint64_t u;
	struct cptx_vqx_done_wait_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t reserved_48_63        : 16;
		/** [ 47: 32](R/W) Time hold-off. When CPT()_VQ()_DONE[DONE] =
		 * 0, or CPT()_VQ()_DONE_ACK is written a timer is cleared. When
		 * the timer reaches [TIME_WAIT]*1024 then interrupt coalescing
		 * ends; see CPT()_VQ()_DONE[DONE]. If 0x0, time coalescing is
		 * disabled.
		 **/
		uint64_t time_wait             : 16;
		uint64_t reserved_20_31        : 12;
		/** [ 19:  0](R/W) Number of messages hold-off. When
		 * CPT()_VQ()_DONE[DONE] >= [NUM_WAIT] then interrupt coalescing
		 * ends; see CPT()_VQ()_DONE[DONE]. If 0x0, same behavior as
		 * 0x1.
		 **/
		uint64_t num_wait              : 20;
#else /* Word 0 - Little Endian */
		uint64_t num_wait              : 20;
		uint64_t reserved_20_31        : 12;
		uint64_t time_wait             : 16;
		uint64_t reserved_48_63        : 16;
#endif /* Word 0 - End */
	} s;
} cptx_vqx_done_wait_t;

/**
 * Register (NCB) cpt#_vq#_doorbell
 *
 * CPT Queue Doorbell Registers
 * Doorbells for the CPT instruction queues.
 */
typedef union {
	uint64_t u;
	struct cptx_vqx_doorbell_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t reserved_20_63        : 44;
		uint64_t dbell_cnt             : 20;
		/** [ 19:  0](R/W/H) Number of instruction queue 64-bit words
		 * to add to the CPT instruction doorbell count. Readback value
		 * is the the current number of pending doorbell requests.
		 *
		 * If counter overflows CPT()_VQ()_MISC_INT[DBELL_DOVF] is set.
		 *
		 * To reset the count back to zero, write one to clear
		 * CPT()_VQ()_MISC_INT_ENA_W1C[DBELL_DOVF], then write a value
		 * of 2^20 minus the read [DBELL_CNT], then write one to
		 * CPT()_VQ()_MISC_INT_W1C[DBELL_DOVF] and
		 * CPT()_VQ()_MISC_INT_ENA_W1S[DBELL_DOVF].
		 *
		 * Must be a multiple of 8.  All CPT instructions are 8 words
		 * and require a doorbell count of multiple of 8.
		 **/
#else /* Word 0 - Little Endian */
		uint64_t dbell_cnt             : 20;
		uint64_t reserved_20_63        : 44;
#endif /* Word 0 - End */
	} s;
} cptx_vqx_doorbell_t;

/**
 * Register (NCB) cpt#_vq#_inprog
 *
 * CPT Queue In Progress Count Registers
 * These registers contain the per-queue instruction in flight registers.
 */
typedef union {
	uint64_t u;
	struct cptx_vqx_inprog_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t reserved_8_63         : 56;
		/** [  7:  0](RO/H) Inflight count. Counts the number of
		 * instructions for the VF for which CPT is fetching, executing
		 * or responding to instructions. However this does not include
		 * any interrupts that are awaiting software handling
		 * (CPT()_VQ()_DONE[DONE] != 0x0).
		 *
		 * A queue may not be reconfigured until:
		 *  1. CPT()_VQ()_CTL[ENA] is cleared by software.
		 *  2. [INFLIGHT] is polled until equals to zero.
		 **/
		uint64_t inflight              : 8;
#else /* Word 0 - Little Endian */
		uint64_t inflight              : 8;
		uint64_t reserved_8_63         : 56;
#endif /* Word 0 - End */
	} s;
} cptx_vqx_inprog_t;

/**
 * Register (NCB) cpt#_vq#_misc_int
 *
 * CPT Queue Misc Interrupt Register
 * These registers contain the per-queue miscellaneous interrupts.
 */
typedef union {
	uint64_t u;
	struct cptx_vqx_misc_int_s {
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t reserved_7_63         : 57;
		/** [  6:  6](R/W1C/H) Translation fault detected. */
		uint64_t fault		       : 1;
		/** [  5:  5](R/W1C/H) Hardware error from engines. */
		uint64_t hwerr		       : 1;
		/** [  4:  4](R/W1C/H) Software error from engines. */
		uint64_t swerr                 : 1;
		/** [  3:  3](R/W1C/H) NCB result write response error. */
		uint64_t nwrp                  : 1;
		/** [  2:  2](R/W1C/H) Instruction NCB read response error. */
		uint64_t irde                  : 1;
		/** [  1:  1](R/W1C/H) Doorbell overflow. */
		uint64_t dovf                  : 1;
		/** [  0:  0](R/W1C/H) PF to VF mailbox interrupt. Set when
		 * CPT()_VF()_PF_MBOX(0) is written.
		 **/
		uint64_t mbox                  : 1;
#else /* Word 0 - Little Endian */
		uint64_t mbox                  : 1;
		uint64_t dovf                  : 1;
		uint64_t irde                  : 1;
		uint64_t nwrp                  : 1;
		uint64_t swerr                 : 1;
		uint64_t hwerr		       : 1;
		uint64_t fault		       : 1;
		uint64_t reserved_5_63         : 59;
#endif /* Word 0 - End */
	} s;
} cptx_vqx_misc_int_t;

/**
 * Register (NCB) cpt#_vq#_saddr
 *
 * CPT Queue Starting Buffer Address Registers
 * These registers set the instruction buffer starting address.
 */
typedef union {
	uint64_t u;
	struct cptx_vqx_saddr_s	{
#if (RTE_BYTE_ORDER == RTE_BIG_ENDIAN) /* Word 0 - Big Endian */
		uint64_t reserved_49_63        : 15;
		/** [ 48:  6](R/W/H) Instruction buffer IOVA <48:6>
		 * (64-byte aligned). When written, it is the initial buffer
		 * starting address; when read, it is the next read pointer to
		 * be requested from L2C. The PTR field is overwritten with the
		 * next pointer each time that the command buffer segment is
		 * exhausted. New commands will then be read from the newly
		 * specified command buffer pointer.
		 **/
		uint64_t ptr                   : 43;
		uint64_t reserved_0_5          : 6;
#else /* Word 0 - Little Endian */
		uint64_t reserved_0_5          : 6;
		uint64_t ptr                   : 43;
		uint64_t reserved_49_63        : 15;
#endif /* Word 0 - End */
	} s;
} cptx_vqx_saddr_t;

#endif /*_CPT_HW_TYPES_H_ */