DPDK logo

Elixir Cross Referencer

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/* SPDX-License-Identifier: BSD-3-Clause
 * Copyright(c) 2020 Inspur Corporation
 */

#include <rte_malloc.h>
#include <rte_mbuf.h>
#include <rte_cycles.h>
#include <rte_ethdev.h>

#include "gro_udp4.h"

void *
gro_udp4_tbl_create(uint16_t socket_id,
		uint16_t max_flow_num,
		uint16_t max_item_per_flow)
{
	struct gro_udp4_tbl *tbl;
	size_t size;
	uint32_t entries_num, i;

	entries_num = max_flow_num * max_item_per_flow;
	entries_num = RTE_MIN(entries_num, GRO_UDP4_TBL_MAX_ITEM_NUM);

	if (entries_num == 0)
		return NULL;

	tbl = rte_zmalloc_socket(__func__,
			sizeof(struct gro_udp4_tbl),
			RTE_CACHE_LINE_SIZE,
			socket_id);
	if (tbl == NULL)
		return NULL;

	size = sizeof(struct gro_udp4_item) * entries_num;
	tbl->items = rte_zmalloc_socket(__func__,
			size,
			RTE_CACHE_LINE_SIZE,
			socket_id);
	if (tbl->items == NULL) {
		rte_free(tbl);
		return NULL;
	}
	tbl->max_item_num = entries_num;

	size = sizeof(struct gro_udp4_flow) * entries_num;
	tbl->flows = rte_zmalloc_socket(__func__,
			size,
			RTE_CACHE_LINE_SIZE,
			socket_id);
	if (tbl->flows == NULL) {
		rte_free(tbl->items);
		rte_free(tbl);
		return NULL;
	}
	/* INVALID_ARRAY_INDEX indicates an empty flow */
	for (i = 0; i < entries_num; i++)
		tbl->flows[i].start_index = INVALID_ARRAY_INDEX;
	tbl->max_flow_num = entries_num;

	return tbl;
}

void
gro_udp4_tbl_destroy(void *tbl)
{
	struct gro_udp4_tbl *udp_tbl = tbl;

	if (udp_tbl) {
		rte_free(udp_tbl->items);
		rte_free(udp_tbl->flows);
	}
	rte_free(udp_tbl);
}

static inline uint32_t
find_an_empty_item(struct gro_udp4_tbl *tbl)
{
	uint32_t i;
	uint32_t max_item_num = tbl->max_item_num;

	for (i = 0; i < max_item_num; i++)
		if (tbl->items[i].firstseg == NULL)
			return i;
	return INVALID_ARRAY_INDEX;
}

static inline uint32_t
find_an_empty_flow(struct gro_udp4_tbl *tbl)
{
	uint32_t i;
	uint32_t max_flow_num = tbl->max_flow_num;

	for (i = 0; i < max_flow_num; i++)
		if (tbl->flows[i].start_index == INVALID_ARRAY_INDEX)
			return i;
	return INVALID_ARRAY_INDEX;
}

static inline uint32_t
insert_new_item(struct gro_udp4_tbl *tbl,
		struct rte_mbuf *pkt,
		uint64_t start_time,
		uint32_t prev_idx,
		uint16_t frag_offset,
		uint8_t is_last_frag)
{
	uint32_t item_idx;

	item_idx = find_an_empty_item(tbl);
	if (unlikely(item_idx == INVALID_ARRAY_INDEX))
		return INVALID_ARRAY_INDEX;

	tbl->items[item_idx].firstseg = pkt;
	tbl->items[item_idx].lastseg = rte_pktmbuf_lastseg(pkt);
	tbl->items[item_idx].start_time = start_time;
	tbl->items[item_idx].next_pkt_idx = INVALID_ARRAY_INDEX;
	tbl->items[item_idx].frag_offset = frag_offset;
	tbl->items[item_idx].is_last_frag = is_last_frag;
	tbl->items[item_idx].nb_merged = 1;
	tbl->item_num++;

	/* if the previous packet exists, chain them together. */
	if (prev_idx != INVALID_ARRAY_INDEX) {
		tbl->items[item_idx].next_pkt_idx =
			tbl->items[prev_idx].next_pkt_idx;
		tbl->items[prev_idx].next_pkt_idx = item_idx;
	}

	return item_idx;
}

static inline uint32_t
delete_item(struct gro_udp4_tbl *tbl, uint32_t item_idx,
		uint32_t prev_item_idx)
{
	uint32_t next_idx = tbl->items[item_idx].next_pkt_idx;

	/* NULL indicates an empty item */
	tbl->items[item_idx].firstseg = NULL;
	tbl->item_num--;
	if (prev_item_idx != INVALID_ARRAY_INDEX)
		tbl->items[prev_item_idx].next_pkt_idx = next_idx;

	return next_idx;
}

static inline uint32_t
insert_new_flow(struct gro_udp4_tbl *tbl,
		struct udp4_flow_key *src,
		uint32_t item_idx)
{
	struct udp4_flow_key *dst;
	uint32_t flow_idx;

	flow_idx = find_an_empty_flow(tbl);
	if (unlikely(flow_idx == INVALID_ARRAY_INDEX))
		return INVALID_ARRAY_INDEX;

	dst = &(tbl->flows[flow_idx].key);

	rte_ether_addr_copy(&(src->eth_saddr), &(dst->eth_saddr));
	rte_ether_addr_copy(&(src->eth_daddr), &(dst->eth_daddr));
	dst->ip_src_addr = src->ip_src_addr;
	dst->ip_dst_addr = src->ip_dst_addr;
	dst->ip_id = src->ip_id;

	tbl->flows[flow_idx].start_index = item_idx;
	tbl->flow_num++;

	return flow_idx;
}

/*
 * update the packet length for the flushed packet.
 */
static inline void
update_header(struct gro_udp4_item *item)
{
	struct rte_ipv4_hdr *ipv4_hdr;
	struct rte_mbuf *pkt = item->firstseg;
	uint16_t frag_offset;

	ipv4_hdr = (struct rte_ipv4_hdr *)(rte_pktmbuf_mtod(pkt, char *) +
			pkt->l2_len);
	ipv4_hdr->total_length = rte_cpu_to_be_16(pkt->pkt_len -
			pkt->l2_len);

	/* Clear MF bit if it is last fragment */
	if (item->is_last_frag) {
		frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
		ipv4_hdr->fragment_offset =
			rte_cpu_to_be_16(frag_offset & ~RTE_IPV4_HDR_MF_FLAG);
	}
}

int32_t
gro_udp4_reassemble(struct rte_mbuf *pkt,
		struct gro_udp4_tbl *tbl,
		uint64_t start_time)
{
	struct rte_ether_hdr *eth_hdr;
	struct rte_ipv4_hdr *ipv4_hdr;
	uint16_t ip_dl;
	uint16_t ip_id, hdr_len;
	uint16_t frag_offset = 0;
	uint8_t is_last_frag;

	struct udp4_flow_key key;
	uint32_t cur_idx, prev_idx, item_idx;
	uint32_t i, max_flow_num, remaining_flow_num;
	int cmp;
	uint8_t find;

	eth_hdr = rte_pktmbuf_mtod(pkt, struct rte_ether_hdr *);
	ipv4_hdr = (struct rte_ipv4_hdr *)((char *)eth_hdr + pkt->l2_len);
	hdr_len = pkt->l2_len + pkt->l3_len;

	/*
	 * Don't process non-fragment packet.
	 */
	if (!is_ipv4_fragment(ipv4_hdr))
		return -1;

	/*
	 * Don't process the packet whose payload length is less than or
	 * equal to 0.
	 */
	if (pkt->pkt_len <= hdr_len)
		return -1;

	ip_dl = rte_be_to_cpu_16(ipv4_hdr->total_length);
	if (ip_dl <= pkt->l3_len)
		return -1;

	ip_dl -= pkt->l3_len;
	ip_id = rte_be_to_cpu_16(ipv4_hdr->packet_id);
	frag_offset = rte_be_to_cpu_16(ipv4_hdr->fragment_offset);
	is_last_frag = ((frag_offset & RTE_IPV4_HDR_MF_FLAG) == 0) ? 1 : 0;
	frag_offset = (uint16_t)(frag_offset & RTE_IPV4_HDR_OFFSET_MASK) << 3;

	rte_ether_addr_copy(&(eth_hdr->s_addr), &(key.eth_saddr));
	rte_ether_addr_copy(&(eth_hdr->d_addr), &(key.eth_daddr));
	key.ip_src_addr = ipv4_hdr->src_addr;
	key.ip_dst_addr = ipv4_hdr->dst_addr;
	key.ip_id = ip_id;

	/* Search for a matched flow. */
	max_flow_num = tbl->max_flow_num;
	remaining_flow_num = tbl->flow_num;
	find = 0;
	for (i = 0; i < max_flow_num && remaining_flow_num; i++) {
		if (tbl->flows[i].start_index != INVALID_ARRAY_INDEX) {
			if (is_same_udp4_flow(tbl->flows[i].key, key)) {
				find = 1;
				break;
			}
			remaining_flow_num--;
		}
	}

	/*
	 * Fail to find a matched flow. Insert a new flow and store the
	 * packet into the flow.
	 */
	if (find == 0) {
		item_idx = insert_new_item(tbl, pkt, start_time,
				INVALID_ARRAY_INDEX, frag_offset,
				is_last_frag);
		if (unlikely(item_idx == INVALID_ARRAY_INDEX))
			return -1;
		if (insert_new_flow(tbl, &key, item_idx) ==
				INVALID_ARRAY_INDEX) {
			/*
			 * Fail to insert a new flow, so delete the
			 * stored packet.
			 */
			delete_item(tbl, item_idx, INVALID_ARRAY_INDEX);
			return -1;
		}
		return 0;
	}

	/*
	 * Check all packets in the flow and try to find a neighbor for
	 * the input packet.
	 */
	cur_idx = tbl->flows[i].start_index;
	prev_idx = cur_idx;
	do {
		cmp = udp4_check_neighbor(&(tbl->items[cur_idx]),
				frag_offset, ip_dl, 0);
		if (cmp) {
			if (merge_two_udp4_packets(&(tbl->items[cur_idx]),
						pkt, cmp, frag_offset,
						is_last_frag, 0))
				return 1;
			/*
			 * Fail to merge the two packets, as the packet
			 * length is greater than the max value. Store
			 * the packet into the flow.
			 */
			if (insert_new_item(tbl, pkt, start_time, prev_idx,
						frag_offset, is_last_frag) ==
					INVALID_ARRAY_INDEX)
				return -1;
			return 0;
		}

		/* Ensure inserted items are ordered by frag_offset */
		if (frag_offset
			< tbl->items[cur_idx].frag_offset) {
			break;
		}

		prev_idx = cur_idx;
		cur_idx = tbl->items[cur_idx].next_pkt_idx;
	} while (cur_idx != INVALID_ARRAY_INDEX);

	/* Fail to find a neighbor, so store the packet into the flow. */
	if (cur_idx == tbl->flows[i].start_index) {
		/* Insert it before the first packet of the flow */
		item_idx = insert_new_item(tbl, pkt, start_time,
				INVALID_ARRAY_INDEX, frag_offset,
				is_last_frag);
		if (unlikely(item_idx == INVALID_ARRAY_INDEX))
			return -1;
		tbl->items[item_idx].next_pkt_idx = cur_idx;
		tbl->flows[i].start_index = item_idx;
	} else {
		if (insert_new_item(tbl, pkt, start_time, prev_idx,
				frag_offset, is_last_frag)
			== INVALID_ARRAY_INDEX)
			return -1;
	}

	return 0;
}

static int
gro_udp4_merge_items(struct gro_udp4_tbl *tbl,
			   uint32_t start_idx)
{
	uint16_t frag_offset;
	uint8_t is_last_frag;
	int16_t ip_dl;
	struct rte_mbuf *pkt;
	int cmp;
	uint32_t item_idx;
	uint16_t hdr_len;

	item_idx = tbl->items[start_idx].next_pkt_idx;
	while (item_idx != INVALID_ARRAY_INDEX) {
		pkt = tbl->items[item_idx].firstseg;
		hdr_len = pkt->l2_len + pkt->l3_len;
		ip_dl = pkt->pkt_len - hdr_len;
		frag_offset = tbl->items[item_idx].frag_offset;
		is_last_frag = tbl->items[item_idx].is_last_frag;
		cmp = udp4_check_neighbor(&(tbl->items[start_idx]),
					frag_offset, ip_dl, 0);
		if (cmp) {
			if (merge_two_udp4_packets(
					&(tbl->items[start_idx]),
					pkt, cmp, frag_offset,
					is_last_frag, 0)) {
				item_idx = delete_item(tbl, item_idx,
							INVALID_ARRAY_INDEX);
				tbl->items[start_idx].next_pkt_idx
					= item_idx;
			} else
				return 0;
		} else
			return 0;
	}

	return 0;
}

uint16_t
gro_udp4_tbl_timeout_flush(struct gro_udp4_tbl *tbl,
		uint64_t flush_timestamp,
		struct rte_mbuf **out,
		uint16_t nb_out)
{
	uint16_t k = 0;
	uint32_t i, j;
	uint32_t max_flow_num = tbl->max_flow_num;

	for (i = 0; i < max_flow_num; i++) {
		if (unlikely(tbl->flow_num == 0))
			return k;

		j = tbl->flows[i].start_index;
		while (j != INVALID_ARRAY_INDEX) {
			if (tbl->items[j].start_time <= flush_timestamp) {
				gro_udp4_merge_items(tbl, j);
				out[k++] = tbl->items[j].firstseg;
				if (tbl->items[j].nb_merged > 1)
					update_header(&(tbl->items[j]));
				/*
				 * Delete the packet and get the next
				 * packet in the flow.
				 */
				j = delete_item(tbl, j, INVALID_ARRAY_INDEX);
				tbl->flows[i].start_index = j;
				if (j == INVALID_ARRAY_INDEX)
					tbl->flow_num--;

				if (unlikely(k == nb_out))
					return k;
			} else
				/*
				 * Flushing packets does not strictly follow
				 * timestamp. It does not flush left packets of
				 * the flow this time once it finds one item
				 * whose start_time is greater than
				 * flush_timestamp. So go to check other flows.
				 */
				break;
		}
	}
	return k;
}

uint32_t
gro_udp4_tbl_pkt_count(void *tbl)
{
	struct gro_udp4_tbl *gro_tbl = tbl;

	if (gro_tbl)
		return gro_tbl->item_num;

	return 0;
}